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a b s t r a c t

This paper studies a distributed linear consensus protocol for second-order multi-agent systems under
limited agent interaction ranges. In particular, two agents can interact with each other only if their
distance is within a certain range. Under a linear consensus protocol with the relative state feedback,
we derive a sufficient condition on the initial states and the interaction range to achieve the second-order
consensus by using a Lyapunov functional approach. Finally, simulation examples are included to validate
the theoretical result.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent systems have become a hot research topic over
last decades due to its wide application in natural and artificial
systems, such as bird flocks, bacteria colonies, power systems,
sensor networks, robotic teams and social groups (Chen, Lu, Yu,
& Hill, 2013; Olfati-Saber, Fax, & Murray, 2007). For a spatially
distributed mobile system, second-order consensus means that all
the agents converge to the same position and move with the same
velocity (Liu & Jiang, 2014; Su, Chen, Wang, & Lin, 2011; Yu, Chen,
& Cao, 2010).

Under a proper protocol, consensus can be achieved on
condition that the switching interaction graphs are connected
frequently enough (Olfati-Saber & Murray, 2004; You, Li, & Xie,
2013). However, how to control multi-agent systems to maintain
a desired interaction graph is a challenging problem. Cucker and
Smale (2007) proposed a second-order system for flocking, where
the agent interaction is modeled as a decreasing function of
the distance between agents, and provided sufficient conditions
to guarantee an asymptotic flocking. Several works extended
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Cucker–Smale model, such as Carrillo, Fornasier, Rosado, and
Toscani (2010); Cucker and Dong (2011) and Ha, Ha, and Kim
(2010). Since the agent interaction in these works continuously
decreases to zero as the distance tends to infinity, each agent can
still interact with any other agent at any finite distance. Strictly
speaking, the interaction graph is always fully connected. To solve
it, we consider that two agents interact with each other only if
their distance is within a certain level, which is motivated by real
applications and covers Cucker–Smalemodel as a special case. Take
the wireless communication of unmanned aerial vehicles (UAVs)
as an example. If two UAVs fly too far apart, the communication
between them will be blocked.

Related works concerning limited interaction ranges also
include Ji and Egerstedt (2007); Su, Wang, and Chen (2010);
Zavlanos, Jadbabaie, and Pappas (2007) and references therein.
Their key idea is to preserve the connected interaction links by
defining a potential function, which results in that the agent
input tends to infinity if the agent approaches to its neighbor’s
interaction range. This usually requires a nonlinear control
protocol, and is hard to implement in practice because of control
constraint and actuator saturation (Meng, Zhao, & Lin, 2013).
Differently, we consider a simple linear consensus protocol which
is easy to implement by using the relative state feedback, and the
control signal will not grow to infinity at any time.

In comparison, the novelty and contribution of this work lies in
the use of a distributed linear consensus protocol under a limited
agent interaction range, and we need to overcome two additional
challenges. Firstly, the discontinuities of the agent interaction
has to be addressed by the non-smooth analysis tool, which is
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fundamentally different from Cucker and Smale (2007). Secondly,
the linear consensus protocol cannot maintain connectivity of the
connected link. In fact, some connected links may be lost and
rebuilt, whichwill not occur under the nonlinear protocol using the
connectivity preserving technique. A preliminary version of this
paper was presented in Ai, You, and Song (2014).

The rest of this paper is organized as follows. In Section 2,
we propose a novel agent interaction model for the multi-agent
systems. In Section 3, we present the main result on the sufficient
consensus condition. In Section 4, simulation examples are given
to validate the theoretical result. Finally, conclusion is drawn in
Section 5.

2. Problem formulation

Consider a multi-agent system consisting of N identical agents
with the second-order dynamics

ṗi (t) = qi (t) , q̇i (t) = ui (t) , t ∈ [0, +∞), (1)

where pi(t), qi(t) ∈ Rn denote the ith agent’s position and velocity
at time t respectively, and ui (t) ∈ Rn is the control input. The
objective is to achieve second-order consensus (Yu et al., 2010),
which is defined as that

lim
t→∞

pi (t) − pj (t)
 = lim

t→∞

qi (t) − qj (t)
 = 0.

2.1. Linear consensus protocol under a limited interaction range

Motivated by primitive societies, e.g. birds or fish, we consider
a linear consensus protocol

ui =

N
j=1

φ

dij


k

qj − qi


+ γ


pj − pi


, (2)

where the distance between agent i and j is dij =
pj − pi

. The
gain k > 0 is a fixed coupling coefficient, and γ > 0 denotes the
scaling factor (Ren & Atkins, 2007). As in the real application, we
study a new interaction function φ : [0, +∞) → [0, +∞), and is
given by

φ(d) > 0, d ∈ [0, r),
φ(d) = 0, d ∈ [r, +∞),

(3)

where the positive real number r denotes the interaction range
of each agent. Moreover, we assume that φ is continuously
differentiable and bounded in (0, r).

Remark 1. It should be noticed that φ in (3) can be discontinuous
and allows a large jump at r . An example is given in Vicsek’s model
(Vicsek, Czirók, Ben-Jacob, Cohen, & Shochet, 1995), i.e., φ(d) = 1
if d ∈ [0, r), and 0 otherwise. Another example is the truncated
interaction function in the Cucker–Smale model, and is given as

φ(d) =


K

σ 2 + d2
β

, d ∈ [0, r),

0, d ∈ [r, +∞),

where K , σ and β are positive. In Cucker and Smale (2007), there
is no truncation, and φ(d) > 0 for any d. This implies that ui needs
information from all the other agents, and the underly interaction
graph is fully connected.

Remark 2. In Ji and Egerstedt (2007); Su et al. (2010); Zavlanos
et al. (2007), nonlinear consensus protocols were given to preserve
the connectivity of agents where the control signal may be very
large if the distance between agents is close to r . This is in contrast
with the linear protocol in (2).

Define the averaged position and velocity by

p̄ (t) ,
1
N

N
i=1

pi (t) , q̄ (t) ,
1
N

N
i=1

qi (t) .

By (2), it is clear that
N

i=1 ui = 0, and ˙̄q (t) = 0. Thus, the averaged
velocity q̄(t) is invariant. Let xi = pi − p̄ and vi = qi − q̄, we obtain
that

ẋi = vi,

v̇i =

N
j=1

φ
xj − xi


k


vj − vi

+ γ


xj − xi


.

(4)

Clearly, the second-order consensus is equivalent to that

lim
t→∞

xi (t) = 0, lim
t→∞

vi (t) = 0, ∀i = 1, . . . ,N.

2.2. Filippov solutions

As we allow φ to have a jump at the range r , it may introduce
discontinuities to the system in (4). Hence, we study its solution
in the Filippov sense (Filippov, 1988), which is an absolutely
continuous function (x(t), v(t)) satisfying differential inclusions

ẋ = v, v̇ ∈ K [u] (5)

where x, v, u denote the stack vectors of xi, vi, ui(i = 1, . . . ,N).
K [u] =


δ>0


µ(D)=0 c̄o [u (B (x, v; δ) − D)], where c̄o [Λ] is the

convex closure of Λ, B (x, v; δ) denotes an open ball of radius δ at
(x, v) and µ(D) is Lebesgue measure of set D.

Lemma 3. There exists a unique Filippov solution to (4).

Proof. Let y = (xT , vT )T , and the subspace

sij =

(xT , vT )T

dij = r

.

For an arbitrary point y0 ∈ sij, its neighborhood B

y0; δ


is sepa-

rated by the surface sij into two regions, which are denoted by B+

and B−. Let ẏ+, ẏ− be the limiting values of ẏ at y0 from the regions
B+ and B−, respectively. Since φ is continuously differentiable and
bounded in (0, r), we know that both ẏ+ and ẏ− exist. Since these
two vectors differ only in terms of v̇+

i , v̇−

i and v̇+

j , v̇−

j , it implies
that the discontinuity vector h = ẏ+

− ẏ− is orthogonal to the nor-
mal vector n⃗ of surface sij at y0, and its projection onto n⃗ is a zero
vector. If y0 ∈ sij ∩ skl ∩ . . . , similar results hold. By Lemma 3 in
Filippov (1988, p. 108), the existence and uniqueness of Filippov
solution of (4) are guaranteed.

2.3. Interaction graph

We use G = {V, E} to describe the interaction graph of the
multi-agent system, where V denotes the set of agents, and E
denotes the interaction links between agents. Let the link weight
be aij = φ(dij). The adjacency matrix A =


aij


is symmetric, and

the Laplacianmatrix is defined as L = ∆−A, where∆ is a diagonal
matrixwith∆ii =

N
j=1 aij. An undirected graph is called connected

if and only if any two distinct nodes i and j in the graph can be
connected via a path, which is a sequence of distinct edges, such
as (i, k1) ∈ E, . . . , (km, j) ∈ E . The connectivity of an undirected
graph is related to the rank of its Laplacian.

Lemma 4 (Biggs, 1993). G is connected if and only if rank(L) =

N − 1.
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