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This paper presents a systematic methodology for designing move blocking strategies to reduce the com-
plexity of a model predictive controller for linear systems, with explicit optimisation of the blocking
structure using mixed-integer programming. Given a move-blocked predictive controller with a terminal
invariant set constraint for stability, combined with an input parameterisation to preserve recursive feasi-
bility, two different optimisation problems are formulated for blocking structure selection. The first prob-
lem calculates the maximum achievable reduction in the number of input decision variables and predic-
tion horizon length, subject to the controller’s region of attraction containing a specified subset of the
state space. Then, for a given fixed horizon length and block count determined by hardware capabilities,
the second problem seeks to maximise the volume of an inner approximation to the region of attraction.
Numerical examples show that the resulting blocking structures are able to optimally reduce controller
complexity and improve region of attraction volume.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC) is an automation paradigm that
has been successfully applied to industrial control problems for a
number of years (Maciejowski, 2002), owing to its intuitive formu-
lation and unique constraint handling capability. At each time step,
MPC aims to find a sequence of inputs to optimise a cost function
over a finite time horizon, whilst satisfying operating constraints.
With an appropriate selection of the cost function and constraints,
recursive feasibility of the optimisation problem and subsequent
convergence of the system states can be guaranteed (Mayne, Rawl-
ings, Rao, & Scokaert, 2000).

Although advances in computational power have improved
tractability of the MPC optimisation problem for an increasingly
large number of systems, a long prediction horizon can prevent
real-time MPC implementation, limiting its utility for systems
with fast dynamics or high sampling rate requirements. Explicit
MPC (Bemporad, Morari, Dua, & Pistikopoulos, 2002) seems to offer
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a solution by computing the MPC control law offline, but this com-
putation becomes intractable for long horizon lengths and large
numbers of constraints (Ferreau, Bock, & Diehl, 2008). Given this
challenge, a number of alternative methods have been proposed
to simplify the online complexity of MPC optimisation directly.
Some approaches exploit the structure of the MPC problem to de-
velop fast optimisation algorithms (Ferreau et al., 2008; Nedelcu,
Necoara, & Tran-Dinh, 2014; Patrinos & Bemporad, 2014; Wang &
Boyd, 2010), whilst others modify the MPC problem itself to reduce
complexity at the expense of optimality. One method of achiev-
ing the latter is to assume some form of input parameterisation,
curtailing the number of degrees of freedom in the online opti-
misation problem. Various candidate parameterisations have been
proposed, including move blocking (Cagienard, Grieder, Kerrigan,
& Morari, 2007; Maciejowski, 2002), linear subspaces (Goebel
& Allgower, 2014; Ong & Wang, 2014) and Laguerre polynomi-
als (Rossiter & Wang, 2008).

Move blocking is a candidate parameterisation that constrains
groups of adjacent-in-time predicted inputs to have the same
value. These groups are denoted as blocks, from where this param-
eterisation gets its name. Its advantages over other parameteri-
sation methods include the parameterised input values retaining
the same physical meaning as the original inputs, as well as the
hardware implementation being straightforward. Whilst move
blocking can reduce complexity, providing recursive feasibility
guarantees is more challenging, since a “shifted” version of the pre-
viously optimal input sequence may no longer be admissible with
respect to the blocking structure. In addition, blocking also affects
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the size of the controller’s Region of Attraction (ROA). With a recur-
sively feasible controller, the ROA corresponds to the set of states
for which an initial feasible solution to the MPC optimisation prob-
lem exists.

Different move blocking approaches have been presented in
order to maintain recursive feasibility guarantees and attempt to
preserve the controller’s ROA. Gondhalekar and Imura (2010) in-
troduce an approach based upon calculating an invariant set that
is also blocking admissible. Additionally, the approach recovers the
ROA of the original unblocked controller by relaxing constraints
at future prediction steps. However, this prevents a terminal con-
straint from being enforced, so explicit guarantees of closed-loop
convergence cannot be given. Cagienard et al. (2007) and Shekhar
and Maciejowski (2012b) present approaches that utilise time-
varying blocking structures, where the changing structure allows a
shifted version of the previously optimal input sequence to be fea-
sible at the following time step. Guarantees of both recursive fea-
sibility and closed-loop convergence can then be provided, with
an appropriately designed terminal constraint and cost function.
However, the ROA of the controller is necessarily reduced by this
constraint, making blocking structure selection an important de-
sign consideration.

Blocking structure design can be approached from the perspec-
tive of satisfying one of two specifications: either a requirement
on minimum ROA size, or a fixed complexity requirement speci-
fied in terms of the number of blocks (or block count) and the hori-
zon length. If the ROA is required to contain a given subset of the
feasible state space, then the amount by which complexity can be
reduced through blocking is restricted. In such cases, reducing the
number of blocks and the horizon length by the greatest extent
possible whilst ensuring the ROA contains this subset allows for
faster computation, reduces the hardware footprint and provides
opportunities for performance improvements through parallelisa-
tion (Longo, Kerrigan, Ling, & Constantinides, 2011).

Conversely, if a controller is to be designed to utilise the max-
imum capability of a given hardware platform, then an effective
limit is placed on the horizon length and number of blocks for
a fixed sampling rate. In this scenario, it is desirable to choose a
blocking structure that possesses the largest ROA size for this hori-
zon length and block count, especially for regulation problems. This
allows the controller to regulate from a large set of initial states
whilst making maximum use of hardware capabilities. However
there are currently no systematic methodologies to select block-
ing structures for either of these design objectives.

This paper addresses this research gap by presenting methods
for optimally selecting blocking structures in a computationally
tractable manner. It first details how a move-blocked predictive
controller is formulated, with terminal constraints used to guaran-
tee convergence and a specific input parameterisation that ensures
recursive feasibility, similar to that used by Ong and Wang (2014).
This parameterisation allows the blocking structure to remain time
invariant, by adding to the input an appropriately shifted scalar
multiple of the previously optimal input sequence. Two different
optimisation problems are then formulated for selecting blocking
structures, which form the primary contribution of this paper:

(1) minimising the number of input blocks and the horizon length,
whilst ensuring that the ROA contains a desired subset of the
state space; and

(2) maximising the volume of an ellipsoidal inner approximation
to the ROA, for a specified horizon length and number of blocks.

Finally, numerical examples illustrate the approaches on simple
two-dimensional systems, which allow ROAs to be easily visualised
and their volumes explicitly computed.

1.1. Nomenclature

The sets of integers and real numbers are denoted Z and R
respectively. Zq p; denotes the set of numbers {a,a + 1, ..., b},
where a,b € Z, a < b. The set of all non-negative integers
is denoted Z. The vertical concatenation [X],XJ, ..., X} 1" is
written as [X1; Xa; ... ; Xy]. I, represents the n x n identity matrix.
0, represents a vector of zeros having length n, whereas 0 is a
block matrix of zeros with dimensions to be inferred from context
within a larger block matrix. 1, represents a vector of ones having
length n, whereas 1,,, denotes an n x m matrix of ones. Zjj
denotes a prediction of signal z(k) made j-steps in to the future
from the current time k. The operator ® denotes the Kronecker
product. The operator é represents the direct sum. The operator
co{-} denotes the convex hull. The volume of a set is denoted
vol(-). P, (-) denotes a projection onto R". ||-||, denotes the p-norm,
whereas |- | denotes the element-wise absolute value. The operator
Vv denotes an element-wise logical disjunction.

2. Problem formulation

Consider the discrete-time linear system
x(k + 1) = Ax(k) + Bu(k), (1)

where x(k) € R" and u(k) € R™. It is assumed that (A, B) is
controllable. Defining an output

y(k) := Cx(k) + Du(k) € R, (2)

the system is subject to constraints at each sampling instant of the
form

yk) € Y:={y|Ey <f}, (3)

for some E € R**P and f € R° that define polytope 4. The control
objective is to asymptotically steer the state of the system to the
origin from the initial state x(0), whilst satisfying the constraints
(3) at all times. The output equation (2) is chosen by the control
designer to incorporate all state, input and cross-constraints.

A model predictive controller is specified to steer the state of the
system (1) to the origin, whilst minimising a given finite-horizon
cost function, subject to the constraints (3). At each iteration, the
MPC optimisation problem takes the form

In&x k) = Illll(gl]N (u(k), x(k)), (4)
subject to

Xoi = X(k) (5a)
Xit1k = AXjjk + Bujjk (5b)
Vitk = CXjji + D (5¢)
Yik € Y (5d)
XNk €T, (5e)

for all j € Zy n—1), given prediction horizon N, input prediction
variables

u(k) = [Hop; Unyks - - - U1y »

state prediction variables Xok, X1k, . . . , XNk, Output predictions
Yoy, Y1jk» - - - » Yn—1k and cost function Jy(x, u). For stability
purposes, a terminal polytopic constraint-admissible control-
invariant set

T :={x|Gx <h}

is defined, for some G € R™*" and h € R’. The invariance of this set
implies that for all x € 7, there must exist a i such that

Ax+BueT (6a)
Cx+Duey. (6b)
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