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a b s t r a c t

A nonnegative matrix A is called primitive if Ak is positive for some integer k > 0. A generalization
by Protasov and Voynov (2012) of this concept to finite sets of matrices is as follows: a set of matrices
M = {A1, A2, . . . , Am} is primitive if Ai1Ai2 . . . Aik is positive for some indices i1, i2, ..., ik. The concept of
primitive sets of matrices comes up in a number of problems within the study of discrete-time switched
systems. In this paper, we analyze the computational complexity of deciding if a given set of matrices is
primitive and we derive bounds on the length of the shortest positive product.

We show that while primitivity is algorithmically decidable, unless P = NP it is not possible to decide
primitivity of a matrix set in polynomial time. Moreover, we show that the length of the shortest positive
sequence can be superpolynomial in the dimension of the matrices. On the other hand, defining P to be
the set of matrices with no zero rows or columns, we give a combinatorial proof of the Protasov–Voynov
characterization (2012) of primitivity for matrices in P which can be tested in polynomial time. This
latter observation is related to the well-known 1964 conjecture of Černý on synchronizing automata; in
fact, any bound on the minimal length of a synchronizing word for synchronizing automata immediately
translates into a bound on the length of the shortest positive product of a primitive set of matrices in P .
In particular, any primitive set of n × n matrices in P has a positive product of length O(n3).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A n × n matrix A which is entrywise nonnegative is said to be
primitive if every entry of Ak is positive for some positive integer
k. It is well-known (see Horn & Johnson, 1995, Corollary 8.5.9) that
this is the case if and only if An2−2n+2 > 0 so the primitivity of
a matrix is easy to verify algorithmically. The Protasov–Voynov
primitivity generalizes this notion to sets of matrices (Protasov
& Voynov, 2012): a finite set of m nonnegative matrices M =

{A1, A2, . . . , Am} is primitive if Ai1Ai2 . . . Aik is (entrywise) positive
for some indices i1, i2, . . . , ik ∈ {1, . . . ,m}.

The property of Protasov–Voynovprimitivity of a set ofmatrices
is important in several applications. In particular, its presence
enables one to use efficient algorithms for the computation of
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the Lyapunov exponent of a stochastic switching system (we
refer the reader to Jungers, 2009; Liberzon, 2003; Shorten, Wirth,
Mason, Wulff, & King, 2007 for a general introduction to switching
systems). Given a finite set of matrices M ⊂ Rn×n, one can define
a stochastic switched system as:

xk+1 = Aikxk, Aik ∈ M, (1)

where for simplicity let us make the assumption that each Aik is
chosen randomly from theuniformdistribution onM. Suchmodels
are commonly used throughout stochastic control; for example,
they are a common choice for modeling manufacturing systems
with random component failures (see Boukas, 2005, Chapter 1).
The Lyapunov exponent of this system is defined by the following
limit (where E denotes the expectation):

λ = lim
k→∞

1
k

E log
 Adk · · · Ad1

. (2)

The Lyapunov exponent characterizes the rate of growth of the
switching systemwith probability one.While it is hard to compute
in general, it turns out that in the particular case of primitive sets
of matrices, efficient algorithms are available. We refer the reader
to Protasov (2010a,b) and Protasov and Jungers (2013a,b) for the
algorithms.
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Second, the concept of primitivity is also related to the so-called
consensus problem. Here thematrices in M are further taken to be
stochastic matrices and the question is whether the recursion of
Eq. (1) almost surely converges to α1, i.e., to a multiple of the
all-ones vector. In this case, we say that the iteration achieves
consensus on the value α. Such ‘‘consensus iterations’’ appear
in a number of applications, and there is now a considerable
literature on the consensus problems providing necessary or
sufficient conditions under various assumptions on the switching—
we refer the reader to the classical and modern papers (Blondel
& Olshevsky, 2014; Chatterjee & Seneta, 1977; DeGroot, 1974;
Jadbabaie, Lin, & Morse, 2003; Liu, Mou, Morse, Anderson,
& Yu, 2011; Lorenz & Lorenz, 2010; Tsitsiklis, Bertsekas, &
Athans, 1986) for examples of such conditions and discussions of
applications. The consensus problemnaturally leads to the concept
of primitivity, since a positive entry in a product represents an
interaction between the two corresponding agents (that is, the two
corresponding entries of x0).

Finally, the problem of matrix primitivity is perhaps the
simplest possible reachability problem for switched systems: given
an unknown initial state in the nonnegative orthant, canwe choose
at each step a matrix Aik from the set of nonnegative matrices
{A1, . . . , Am} so that the final state of Eq. (1) is in the interior of the
nonnegative orthant? As we show in this paper, even this simple
and stylized reachability problem faces significant computational
obstructions.

In this paper, we study the problem of recognizing primitivity
and related problems. Given a set of n × n nonnegative matrices
M = {A1, . . . , Am} one would like to determine, efficiently if
possible, whether or not M is primitive. This is closely related
to the problem of bounding the length of the shortest positive
product of matrices from M, which we denote by l(M). Indeed, an
upper bound on l(M) immediately translates into algorithms for
checking primitivity by simply checking every possible product of
length smaller or equal to this bound (though in some particular
cases more efficient algorithms can be used (see Section 3)).

1.1. Our results

This paper is consequently concernedwith upper bounds on the
length of l(M) as well as algorithms and complexity of verifying
existence of a positive product of matrices taken in a given set M.
Our main results are:

(1) We show in Section 2 that recognizing primitivity is decidable
but NP-hard as soon as there are three matrices in the set.
Primitivity can be decided in polynomial time for one matrix
and so we leave the computational complexity of the case of
two matrices unresolved.

(2) We also show in Section 2 that the shortest positive product
may have a length that is superpolynomial in the dimension of
the matrices, even with a fixed number of matrices in the set.

(3) We consider in Section 3 the primitivity problem under the
additional mild assumption that all the matrices in the set P
have no zero rows or columns. We provide a combinatorial
proof of a previously-known primitivity criterion under this
assumption. This resolves an open question of Protasov and
Voynov (2012), who first proved the validity of the same
criterion using linear algebraic tools, and showed that it can
be checked in polynomial time.

(4) We also prove in Section 3 that for primitive sets of matrices in
P , the shortest positive product has length O(n3). Moreover,
we show that in this case the length of the shortest positive
product is related to the well-known (and unresolved) con-
jecture of Černý on synchronizing automata. In particular, we
show that resolution of the Černý conjecture would improve
the above bound to O(n2). Moreover, any upper bound on the

length of the shortest synchronizing word for a synchronizing
automaton immediately translates into a bound on the length
of the shortest positive product of a set of primitive matrices
in P .

1.2. Implications of our results

Our results have implications for a number of ongoing research
efforts within the field of discrete-time switched systems. First,
they complement previous results from Protasov (2010a,b) and
Protasov and Jungers (2013a,b) which provided simple algorithms
for the computation of Lyapunov exponents of nonnegative matri-
ces from P for which a positive product exists. If the existence of a
positive product is not guaranteed, then the above papers provided
more complex and computationally involved protocols relying on
quasiconcave maximization. Our results here provide an efficient
way of verifying when it is possible to use the lower complexity
protocols to compute Lyapunov exponents of matrices from P .

Second, our results shed light on the problem of consensus
with randomly chosen matrices at each step. Our results in
Section 3 give a necessary and sufficient condition for primitivity
of stochastic matrices (corresponding to consensus on a value in
the strict convex hull of the initial states) which have no zero
rows and columns. To our knowledge, the only previous case when
necessary and sufficient conditions for consensus with randomly
chosenmatrices have been provided has been in Tahbaz-Salehi and
Jadbabaie (2008) for the case of matrices with positive diagonals.
Since stochastic matrices cannot have a zero row by definition, our
results in Section 3 effectively require only the absence of zero
columns, significantly expanding the set of stochastic matrices for
which necessary and sufficient conditions for random consensus
can be given.

Finally, as we previously remarked, matrix primitivity is among
the mathematically simplest possible reachability questions one
can pose for switched systems. The NP-hardness results of
Section 1 show that, unfortunately, even this problem cannot be
decided in polynomial time unless P = NP . In particular, this
implies that any generalization of this simple reachability problem
is NP-hard as well.

For example, the problem of steering an unknown initial state
of Eq. (1) to the interior of a given polyhedron by picking the
appropriate matrix Aik at each step is NP-hard, even if the initial
condition lies on the boundary of the polyhedron. More broadly,
our results suggest that reachability problems for discrete-time
switched systems can be NP-hard even after a slew of simplifying
assumptions on the matrices involved, the structure of the set to
be reached, and the initial condition.

1.3. Related work

The concept of primitivematrix families aswe study it herewas
pioneered in the recent paper (Protasov & Voynov, 2012), which
extended the classical Perron–Frobenius theory and provided a
structure theorem for the primitive matrix sets in P . A conse-
quence of this theorem was that for matrices in P primitivity can
be tested in polynomial time. The question of finding a combina-
torial proof was left open.

Other generalizations of the well-studied primitivity of one
single matrix to a set of matrices exist in the literature. See for
instance Olesky, Shader, and van den Driessche (2002) or Cohen
and Sellers (1982), and Protasov (2013) for a recent paper on so-
called k-primitivity.

We note that two recent papers, appearing simultaneously in
2013 with the conference version of this paper (Blondel, Jungers,
& Olshevsky, 2013), have also tackled items (3) and (4) above
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