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a b s t r a c t

An algorithmic framework that identifies irrelevant data (i.e., data thatmay be ignoredwithout any loss of
optimality) at agents of a sequential team is presented. This framework relies on capturing the properties
of a sequential team that do not depend on the specifics of state spaces, the probability law, the system
dynamics, or the cost functions. To capture these properties the notion of a team form is developed. A
team form is thenmodeled as a directed acyclic graph and irrelevant data is identified using D-separation
properties of specific subsets of nodes in the graph. This framework provides an algorithmic procedure
for identifying and ignoring irrelevant data at agents, and thereby simplifying the form of control laws
that need to be implemented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Teams refer to multi-agent stochastic control systems in which
all agents have a common objective. Teams arise in many modern
technologies including networked control systems, communica-
tion networks, sensor and surveillance networks, environmental
remote sensing, and smart grids. Dynamic programming, which
is the main solution concept for optimal design of centralized
stochastic control, onlyworks for specific sub-classes of teamprob-
lems (Nayyar, Mahajan, & Teneketzis, 2013). To apply the dynamic
programming principle to general team problems, one needs to
identify the structure of optimal control laws. Such structural re-
sults are of two type: (i) remove irrelevant information at the con-
troller; (ii) identify a sufficient statistic of the data available at the
controller. In this paper, we present an algorithmic approach to
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identify the first type of structural result. As an example of such
structural results, consider the problem of real-time communica-
tion studied in Witsenhausen (1979).

Example 1. Consider a real-time communication system consist-
ing of a source, an encoder, and a decoder. The source is a first-
order Markov process {St}∞t=1. The encoder observes the source
output and generates quantized symbols Qt , causally and in real-
time, as follows

Qt = et(S1:t ,Q1:t−1)

where S1:t is a short hand notation for (S1, . . . , St) and Q1:t−1 has
a similar interpretation. The decoder is a finite state machine. Mt
denotes the state of the machine at time t . The decoder generates
an estimate Ŝt of the source as follows

Ŝt = dt(Qt ,Mt−1)

and updates the contents of its memory as follows

Mt = gt(Qt ,Mt−1).

At each time a distortion ct(St , Ŝt) is incurred. The objective is
to choose an encoding policy e := (e1, e2, . . . , eT ), a decoding
policy d := (d1, d2, . . . , dT ), and a memory update policy g :=
(g1, g2, . . . , gT ) to minimize

E(e,d,g)

 T
t=1

ct(St , Ŝt)

.
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The following two structural results hold for Example 1.

(1) For any decoding and memory update strategies (d, g), there
is no loss of optimality in restricting attention to an encoding
strategy of the form

Qt = et(St ,Mt−1).

(2) When Mt−1 = Q1:t−1, there is no loss of optimality in
restricting attention to encoding and decoding strategies of the
form

Qt = et(St ,Πt) and Ŝt = dt(Qt ,Πt)

whereΠt(s) = P(St = s | Q1:t−1).

The first structural result shows that S1:t−1 and Q1:t−1 are irrelevant
at the encoder. The second structural result shows that Πt is
a sufficient statistic for Q1:t−1. The first structural result was
proved in Witsenhausen (1979) and the second in Walrand
and Varaiya (1983). Based on the second structural result, a
dynamic programming decomposition was presented in Walrand
and Varaiya (1983).

In this paper, we develop an algorithmic framework to identify
irrelevant data at agents in a team. Removing such irrelevant
data is usually the first step in deriving a dynamic programming
decomposition for teams. For example, in the above example, the
derivation of the second structural result (and therefore of the
dynamic program) relies on the first structural result.

Structural results that remove irrelevant data are robust to
various modeling assumptions: the specifics of the state spaces,
the underlying probability measure, and the specifics of the
plant dynamics and the cost functions. All that matters is the
form of the system. We model dynamical systems using directed
acyclic graph in such a manner that captures the form of a team.
Removing irrelevant data is equivalent to removing edges from
the corresponding directed acyclic graph. To identify the irrelevant
data, we use graphical modeling algorithms to iteratively apply
Blackwell’s principle of irrelevant information (Blackwell, 1964),
which we state below for completeness.

Theorem 1 (Blackwell’s Principle of Irrelevant Information). For any
Borel spacesX,Y, andU, let P be a probability measure onX×Y and
c : X × U → R be a bounded Borel-measurable function. Then for
any Borel-measurable function g : X×Y→ U, there exists another
Borel measurable function h : X→ U such that

E[c(x, h(x))] ≤ E[c(x, g(x, y))]

where the expectation is with respect to P.

A consequence of Theorem 1 is the following. Consider the op-
timization problem of choosing a control law g : X × Y → U

to minimize E[c(x, g(x, y))]. Then, there is no loss of optimality in
restricting attention to control laws of the form h : X→ U. Equiv-
alently, the observation y is irrelevant for optimal control. In this
paper, we present algorithms that recursively apply Blackwell’s
principle at each agents and groups of agents to identify irrelevant
data in teams.

1.1. Literature overview

Team problems were introduced in the economics literature in
the 1950s (Marschak & Radner, 1972; Radner, 1962) and have been
extensively analyzed in the control literature since the 1970s (Ho,
1980; Sandell, Varaiya, Athans, & Safonov, 1978; Witsenhausen,
1971). Motivated by applications in networked control systems,
there has been tremendous activity in the study of team problems
in the last decade. We refer the reader to Mahajan, Martins,
Rotkowitz, and Yüksel (2012) and references therein for a detailed
literature overview.

Broadly speaking, team problems are modeled either in state
space using information structures or in input–output formula-
tion using sparsity constraints. We follow the former modeling
paradigm in this paper. Such models are analyzed either for the
LQG setup (linear dynamics, quadratic cost, and Gaussian distur-
bances) or general (non-linear) Markovian setup. In this paper, we
follow the latter setup and develop an algorithmic procedure to
identify and remove irrelevant data at each agent.

We model teams using a directed acyclic graph (DAG) and use
algorithms from graphical models to remove edges that corre-
spond to irrelevant data. A DAG is a natural structure to model the
causality and partial order relationship between the system vari-
ables of a sequential team. Other researchers have also used DAGs
to model sequential teams (Gattami, 2007; Ho & Chu, 1972; Wit-
senhausen, 1971; Yoshikawa, 1978) but, to the best of our knowl-
edge, the idea of using graphical modeling algorithms on the DAG
representation to identify and remove redundant information has
not been used before.

1.2. Contributions

Our main contribution is to present a graphical model for
sequential team. This model captures the information structure of
the systemand the conditional independence relations between all
system variables.

Using this graphicalmode,wedevelop graphicalmodeling algo-
rithms that identify irrelevant data at each agent. An agent can ig-
nore this data without any loss of optimality. Two such algorithms
are presented. The first algorithm sequentially identifies irrelevant
data at each agent in the system. Preliminary versions of this algo-
rithm were presented in Mahajan & Tatikonda, 2009a,b. The sec-
ond algorithm sequentially identifies irrelevant data at all possible
subsets of agents in the system. These algorithms do not depend
on the type of system dynamics or the cost function.

The rest of the paper is organized as follows. In Section 2 we
define team form and team type and formulate the problem of
simplification of a team form. In Section 3 we present background
material on graphical models and in Section 4 we describe how
to represent a team form using a DAG (directed acyclic graph).
Simplification of a team form may be viewed as removing edges
from this DAG. Algorithms that perform this simplification are
presented in Section 5 (for a single agent) and Section 6 (for a group
of agents). Examples illustrating this approach are presented in
Section 7 and we conclude in Section 8.

1.3. Notation

We use the following notation in the paper.

• For a set A, |A| denotes the cardinality of A.
• For two sets A and B, A× B denotes their Cartesian product.
• For two measurable spaces (X,F ) and (Y, G ), F ⊗ G denotes

the product σ -field onX× Y.
• For two probability measures µ on (X,F ) and ν on (Y, G ),
µ⊗ ν denotes the product probability measure on F ⊗ G .
• X1:t is a short hand for the sequence (X1, X2, . . . , Xt).
• For a set N and a sequence of random variables {Xn}, XN is a

short-hand for (Xn : n ∈ N).
• For a set N and a sequence of state spaces {Xn}, XN is a short-

hand for


n∈N Xn.
• For a set N and a sequence of σ -fields {Fn}, FN is a short-hand

for


n∈N Fn.

2. Modeling sequential team using team form and team type

A sequential team is a decentralized control system consisting
of multiple agents (also called controllers or decision makers),
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