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The problems of state estimation and feedback stabilization of a linear system including a communications
channel are quantified as escape or survival times, which yield stochastic processes describing the time
of first exit of the state estimate error or of the system output from a specific domain. The complications
introduced by communications - intermittency, channel noise, quantization, etc. - are evaluated using
a Markov stopping time formulation. This is compared to and contrasted with earlier analyses which
considered the behavior of Kalman filters with intermittent data based on moments and conditional
moments, and the evaluation of the minimal number of bits required for mean square stabilization. The
main result shows the escape time is characterized by a Markov chain which is amenable to explicit
analysis through the calculation of its cumulative distribution function. This is examined in the linear
Gaussian and quantized linear Gaussian cases and then used to develop an approach to bitrate assignment
in such communications-based control systems.

Exit time
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1. Introduction

We study the problems of state estimation and output feedback
stabilization of a time-invariant linear system including a single
communications link.

Xip1 = AX + Buy + wy, (1
Yk = Cxx + i, (2)
Ze = YikQa W) (3)

Here, as usual, x;, ug, yk, wg, Vg are the system state, input, out-
put, process noise and measurement noise signals of dimensions
n, p, m, n, mrespectively and [A, B, C] are the system matrices
of conformable dimensions. The signal z is the received measure-
ment from the system and is modeled in (3) as the product of a
scalar random variable, y, taking values 0 or 1 and a quantized ver-
sion of the system output yy. As in Shi, Epstein, and Murray (2010)
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and Sinopoli et al. (2004), the intermittency of the communication
channel is modeled by the {y,} sequence. The quantization func-
tion @q4(-) is a subtractive dithered quantizer with finite bitrate in
each channel of input y;, and will be further explicated shortly.

Definition 1 (Escape Time). Given a closed domain & C R? and
a stochastic process {& : k = 1,...} on R% the escape time is
defined to be

argminé, & D, or
k

T, =
00, if& € D Vk.

Sometimes the escape time is called the ‘first exit time’, ‘stopping

time’, ‘hitting time’ or ‘residence time’. We shall be concerned

with the escape time for the state process, x;, state prediction

error process, Xy x—1, or the output process, yy, of (1)-(2) when the

control input is causally computed.

Fig. 1 shows two simulations of the Kalman state prediction
error Xy—1 for a scalar system with a magnitude bound placed at
60 and differing rates, P,,, of packet arrival. In the left graph, the
expected value of the conditional error covariance - the focus of
Sinopoli et al. (2004) - is finite, while in the right it is not. Note the
similarities between the figures except for the time scales. Escape
time would correspond to the first achievement of the bound
60. Our interest is in characterizing this escape time cumulative
distribution function.


http://dx.doi.org/10.1016/j.automatica.2015.08.014
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.08.014&domain=pdf
mailto:chhuang@ucsd.edu
mailto:rbitmead@ucsd.edu
http://dx.doi.org/10.1016/j.automatica.2015.08.014

202

60

401 i

20 H R

prediciton error
o
=
=
—=
I S
=
=
—_—
——
—

-60 |
2000

Il Il Il
4000 6000 8000 10000
time

C.-C. Huang, RR. Bitmead / Automatica 61 (2015) 201-210

60

40+t i

20 b

prediciton error

-60 I I I I
200 400 600 800

time

1000

Fig. 1. Simulation of Kalman predictor error withA = 1.2, C =1, Q = 0.005, R = 0.001, P, = 0.15 (left) and 0.1 (right), and bound level 60.

Clearly the escape time is a random variable provided the
infinite value has zero probability. We have the following result
applicable in the linear Gaussian case and independent of the
system matrices [A, B, C].

Lemma 1. For the linear system (1), with noise process {wy} Gaus-
sian, white, possessing full-rank covariance and independent from x,
with control uy causally computed, and for D compact, the escape
time of Xy is almost surely finite.

The proof is in the Appendix. The import of Lemma 1 is that
it ensures that, in the linear Gaussian case or equivalent problems
able to be transformed to linear Gaussian, using say Girsanov’s The-
orem, the finite escape of the state and/or output from any com-
pact domain is ensured. The analysis of such processes then ought
to concentrate on the description of the escape time rather than
attempting to establish almost sure confinement to a compact set
or characterize moment properties. This hearkens back to the es-
cape time or residence time analysis of, say, Freidlin and Wentzell
(1998), Khasminskii (1980), Meerkov and Runolfsson (1988),
Varadhan (1984) and Zabzcyk (1985). These earlier treatments
focus on stable continuous-time systems with small stochastic
perturbations and use the Theory of Large Deviations to develop
escape time characterizations as the noise power tends to zero. Our
approach will maintain discrete time and deal with both stable and
unstable systems with non-infinitesimal perturbations. This will
not draw on Large Deviations Theory other than for comparison.

Our treatment of (1)-(3) endeavors to blend two distinct trains
of research. The first is associated with the behavior of state
estimators for such systems as treated in, say, Kar, Sinopoli, and
Moura (2012), Mo and Sinopoli (2012), Shi et al. (2010) and
Sinopoli et al. (2004) with or without control being applied. Since
the system is linear and if the applied control is known, the
controlled state behavior is derivable from the estimator. The
second class of problems, characterized by results such as Nair
and Evans (2004), Tatikonda and Mitter (2004a,b) and You and
Xie (2011) concentrate on the stabilization aspects of the feedback
control. The distinction between the two sets of problems in
the literature rests with the description of the communications

channel and the adaptation of quantization. The work in Minero,
Franceschetti, Dey, and Nair (2009) and Minero, Coviello, and
Franceschetti (2013) studies the earlier work in a more general
case and yields necessary conditions for stabilization, recovering
results of some previous works in the two approaches. In the
estimator problem, the communication is taken to be intermittent
- that is, the stochastic process {y,} operates in a persistent
fashion to cause arbitrarily long outages of communications -
but the communication is not limited in bitrate (there is no
quantizer) and full state reconstruction occurs with any successful
communication packet. In earlier work on the stabilization
problem, the emphasis is on the quantizer and its associated bitrate
limit and the channel is assumed not intermittent, i.e. y, = 1
for all k, with a deterministic maximal delay and possible additive
channel noise. The approach adopted in this paper is to permit
both intermittency and limited bitrate, since the Markov model
describing escape time applies to both. We also pose a different
set of questions dealing with escape time, which we regard as
being more apropos for these problems. These focus not on limiting
behaviors or mean-square stabilization but on characterizing the
cumulative probability distribution function (cdf) of the escape
time of the system state, output or state estimate error, since
in general there is no almost sure bound on these, as stated in
Lemma 1.

Before launching into the analysis, it is pertinent to examine
some practical sources of estimation and control problems asso-
ciated with systems described by (1)-(3), since the presence of
a single communications link rules out teleoperation-styled feed-
back control problems. Utility management of a geographically dis-
tributed system, such as a power grid or radar network, where
the sensors, but not the actuators, are remotely placed and linked
back to base by communications networks, is the clearest appli-
cation of state estimation operating with communications limits.
The study of sensor fusion and its sibling area of sensor scheduling
Evans and Krishnamurthy (1998) and Evans, Krishnamurthy, Nair,
and Sciacca (2005) have a long history in these arenas. Schweppe
(Schweppe & Handschin, 1974) was a pioneer in the application
of such methods in power system state estimation using data of
variable reliability. More generally, the study of missing data has
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