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a b s t r a c t

This paper presents a consensus-based robust cooperative control framework for a wide class of
linear time-invariant (LTI) systems, namely Negative-Imaginary (NI) systems. Output feedback, dynamic,
Strictly Negative-Imaginary (SNI) controllers are applied in positive feedback to heterogeneous multi-
input–multi-output (MIMO) plants through the network topology to achieve robust output feedback
consensus. Robustness to external disturbances andmodel uncertainty is guaranteed viaNI system theory.
Cooperative tracking control of networked NI systems is presented as a corollary of the derived results
by adapting the proposed consensus algorithm. Numerical examples are also given to demonstrate the
effectiveness of proposed robust cooperative control framework.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative control of heterogeneous LTI systems has been
widely studied in the literature and there is now awealth of meth-
ods to handle different aspects of the nominal cooperative control
problem. Robust cooperative control is however less studied due
to the inherent complexities associatedwith robustness. For exam-
ple, Cai andHagen (2010) studies a cooperative control problem for
a string of coupled heterogeneous subsystems. Such systems can
arise in vehicle platoons. However, the systems considered are con-
strained to SISO systems (due to the mathematics of the continued
fractions used) and do not allow poles on the imaginary axis, and
also the graph is only restricted to string connections. On the other
hand, Su and Huang (2013) solves a cooperative robust output reg-
ulation problem for a class of LTI systems with minimum phase
dynamics. A combination of simultaneous high-gain state feedback
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control and a distributed high-gain observer is adopted to achieve
cooperative output regulation under particular parameter uncer-
tainty as well as particular external disturbances. From a different
perspective, Zhu and Chen (2014) discusses a full-state feedback
robust consensus protocol for heterogeneous second-order multi-
agent systems. Existing published literature on robust cooperative
control of heterogeneous multi-agent systems is hence restricted
to either only SISO plants, or minimum phase LTI plants or full-
state feedback second order plants.

NI systems theory has drawn much attention (e.g. Ferrante &
Ntogramatzidis, 2013, Opmeer, 2011 and Wang, Lanzon, & Pe-
tersen, in press) since it was introduced in Lanzon and Petersen
(2008). This is because there are a wide class of LTI systems with
negative imaginary frequency response, forwhich applications can
be easily found in a variety of fields including aerospace, large
space structures, multi-link robotic arms usually with co-located
position sensors and force actuators (Petersen & Lanzon, 2010) and
nano-positioning (Mabrok, Kallapur, Petersen, & Lanzon, 2014b),
etc. Also the NI systems class is invariant to additive NI model un-
certainty and other type interconnections as discussed in Ferrante,
Lanzon, and Ntogramatzidis (submitted for publication). Thus, re-
sult based on NI systems theory immediately yield robustness to
spill-over dynamics (Lanzon & Petersen, 2008; Petersen & Lanzon,
2010; Song, Lanzon, Patra, & Petersen, 2012a).
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Nomenclature

In n × n identity matrix
1n n × 1 vector with all elements being 1
M > (≥)0 M is a positive (semi-) definite matrix
M < (≤)0 M is a negative (semi-) definite matrix
Ker(M) Kernel of a matrixM
Im(M) Image of a matrixM
rank(M) Rank of a matrixM
λi(M), λ̄(M) The ith, largest eigenvalue ofM
λ(M), det(M) Spectrum, determinant of matrixM
MT Transpose of matrixM
M∗ Complex conjugate transpose of matrixM
Rm×n, Cm×n Set ofm × n real, complex matrices
Re[s] Real part of s ∈ C
L2 Abbreviation for L2[0, ∞)
ImL2(G) Image of system G(s) under all L2 inputs
RH∞ Set of real–rational stable transfer functions
[P(s), Ps(s)] Positive feedback interconnection of 2 plants

A square, real, rational, proper transfer functionmatrix P(s) is NI
if the following conditions are satisfied (Lanzon & Petersen, 2008;
Mabrok, Kallapur, Petersen, & Lanzon, 2014a; Xiong, Petersen, &
Lanzon, 2010): (1) P(s) has no pole in Re[s] > 0; (2) ∀ω > 0 such
that jω is not a pole of P(s), j(P(jω) − P(jω)∗) ≥ 0; (3) If s = jω0
where ω0 > 0 is a pole of P(s), then it is a simple pole and the
residue matrix K = lims→jω0(s − jω0)jP(s) is Hermitian and posi-
tive semi-definite; (4) If s = 0 is a pole of P(s), then lims→0 skP(s)
= 0 ∀k ≥ 3 and P2 = lims→0 s2P(s) is Hermitian and positive
semi-definite. This definition includes free body dynamics which
leads to dynamical models with poles at the origin, such as s2+1

s2(s2+2)
.

Examples of NI systems can be found in Mabrok et al. (2014a), Pe-
tersen and Lanzon (2010), and these include a single-integrator
system, a double-integrator system, second-order systems such as
those that arise in undamped and damped flexible structures or in-
ertial systems, to name a few typically considered in the consensus
literature. Cooperative control of multiple NI systems arises with
the development of NI systems’ applications where one single NI
system is incapable of achieving themission goals, for example, the
load is too heavy to be carried by one multi-link robotic arm.

This paper solves the general problem, robust output feedback
cooperative control of heterogeneous MIMO NI systems (possibly
with poles on the imaginary axis) under external disturbances
and model uncertainty. Unlike the literature, we impose no
minimum phase assumption; the communication graph can be
any general undirected and connected graph rather than any
specific graph; we allow MIMO agents; we consider explicitly
robustness to both unmodelled dynamics of arbitrary order and
energy-bounded disturbances; we handle output feedback rather
than full state feedback; and explicitly characterise a family of
control laws that could be tuned for performance. Towards this
end, NI system theory is adopted to first derive conditions for
robust output feedback consensus and then transport the proposed
results to cooperative tracking to obtain a robust output feedback
cooperative control framework for a wide class of LTI systems.
Preliminaries of graph theory: G = (V, E) where V = {v1, v2,
. . . , vn} and E ⊆ V × V mathematically describes a graph with
n nodes and l edges. An undirected and connected graph requires
that there exists at least one bidirectional path in E connecting all
nodes inV . The incidencematrixQ ofG is a |V|×|E | (n× l)matrix,
which can be attained by first letting each edge in the graph have
an arbitrary but fixed orientation and then

Q :=

qve = 1 if v is the initial vertex of edge e,
qve = −1 if v is the terminal vertex of edge e,
qve = 0 if v is not connected to e.

Fig. 1. Multiple heterogeneous NI plants.

For an undirected graph G, Q is not unique but the corresponding
Laplacian matrix is unique and given by Ln = QQT . Similarly, the
edge-weighted Laplacian is also unique given by Le = QKQT ,
where K ≥ 0 is the diagonal edge weighting matrix. It is also
shown in Bapat (2010) that rank(Q) = n−1 = rank(Ln)whenG is
connected and rank(Q) = n− 1 = rank(Le) when G is connected
and det(K) ≠ 0. It is well-known (Ren & Beard, 2008) that Ln and
Le will both have one unique zero eigenvalue associated with the
eigenvector 1n and all the other eigenvalues are positive and real,
when det(K) ≠ 0, G is undirected and connected. In this case,
Ln ≥ 0, Le ≥ 0, and

Ker(Ln) = Ker(Le) = Ker(QT ) = span{1n}. (1)

Note also that, for an undirected and connected graph G, any row
removal of Q or column removal of QT yields a full row rank Q
or a full column rank QT respectively by inspecting the relation of
Laplacianmatrix withQ and the property of positive semi-definite
matrices with a kernel dimension of 1 (Golub & Van Loan, 2012).

2. Robust output feedback consensus

In this section, we will consider robust output feedback con-
sensus for multiple heterogeneous NI systems under L2 external
disturbance and additive SNI model uncertainty (as would arise in
spill-over dynamics for truncated order flexible structures). Two
cases will be discussed to cover all the heterogeneous cases. First
of all, let us begin with the problem formulation with the follow-
ing notation:maxni=1{ai} is themaximumvalue of ai, i ∈ {1, . . . , n}

and
n

diag
i=1

{Ai} is a block-diagonal matrix with Ai, i ∈ {1, . . . , n} on

the diagonal. A square, real, rational, proper transfer function ma-
trix Ps(s) is SNI if the following conditions are satisfied: (1) Ps(s)has
nopole in Re[s] ≥ 0; (2)∀ω > 0, j(Ps(jω)−Ps(jω)∗) > 0. Examples
of SNI systems include 1

s+a where a > 0, a
s2+bs+c

where a, b, c > 0
or non-minimum phase systems such as 1−s

2+s . See Lanzon and Pe-
tersen (2008), Petersen and Lanzon (2010) for further examples.

For multiple heterogeneous NI systems (in general MIMO) with
n > 1 agents, the transfer function of agent i ∈ {1, . . . , n} is
given as

ŷi = P̂i(s)ûi, (2)

where ŷi ∈ Rmi×1 and ûi ∈ Rmi×1 are the output and input of
agent i respectively. In order to deal with the consensus of dif-
ferent dimensional inputs/outputs, P̂i(s) can be padded with ze-
ros up to m = maxni=1{mi} and the locations of padding zeros
depend on which output needs to be coordinated, for instance,
Pi(s) =


P̂i(s) 0
0 0


has dimension of m such that the first mi out-

puts are to be coordinated, or Pi(s) =


0 0
0 P̂i(s)


also has dimension

of m, but now the last mi outputs are to be coordinated instead.
Accordingly, the input ûi and output ŷi are extended to be ui =
ûT
i 0

T or

0 ûT

i

T
∈ Rm×1, and yi =


ŷT
i 0

T or

0 ŷT

i

T
∈ Rm×1, respectively. Note that interleaving zero rows and corre-
sponding columns within P̂i(s) is also permissible. It can be easily
seen that the above manipulation would preserve the NI property
by checking the definition. Therefore, without loss of generality,
the overall plant can be described as Fig. 1:



Download English Version:

https://daneshyari.com/en/article/695247

Download Persian Version:

https://daneshyari.com/article/695247

Daneshyari.com

https://daneshyari.com/en/article/695247
https://daneshyari.com/article/695247
https://daneshyari.com

