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a b s t r a c t

The control of dynamical processes in networks is considered, in the case where measurement and
actuation capabilities are sparse and possibly remote. Specifically,we study control of a canonical network
dynamics, when only one network component’s state can bemeasured and only one (in general different)
component can be actuated. To do so, we characterize the finite- and infinite-zeros of the resulting SISO
system in terms of the graph topology. Using these results, we establish graph-theoretic conditions under
which there are zeros in the closed right-half plane. These conditions depend on the length, strength,
and number of the paths from the component where the input is applied to the component where the
measurements are made. Then, we present the implications of these conditions on the controller design
task focusing in stabilizations/destabilization of network processes under static negative feedback.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Network synchronization and diffusionmodels are used to cap-
ture such diverse processes as vehicle coordination, biochemical
reactions, and sensor-fusion algorithms (Watts & Strogatz, 1998).
The temporal dynamics of these models have been extensively
studied from a graph-theoretic perspective. First, emergence of
synchronization has been shown under broad connectivity condi-
tions, i.e. the models have been shown to have a stable manifold
wherein all the network components’ states are identical (Bara-
hona & Pecora, 2002; Wu & Chua, 1995). Further results have been
developed that tie performance characteristics (e.g., the settling
rate) to features of the network’s graph. As synchronizationmodels
have found wider application in engineering contexts, their design
and control have also been of significant interest. Many of these
studies consider decentralized control ofmultiple autonomous but
communicating agents (e.g., vehicles), which yields a closed-loop
dynamics that is a network synchronization process. In comple-
ment, several recent studies have considered topology design to
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shape the performance of synchronization processes (Abad Torres
& Roy, 2013, 2014; Roy, Wan, & Saberi, 2009; Wan et al., 2008).

While the literature has focused on emergence and design
of whole-network behaviors such as synchronization, there is a
growing need to understand input–output dynamics and feedback
regulation of established network processes, when measurement
and actuation are available at only a few network components.
This need for an input–output analysis partially stems from
challenges in security and vulnerability analysis of infrastructures
and other complex dynamical networks (Belykh, Belykh, & Hasler,
2004; Koh & Vinnicombe, 2012; Pasqualetti, Bicchi, & Bullo, 2009,
2011; Roy, Xue, & Das, 2012; Sandberg, Teixeira, & Johansson,
2010; Vidyasagar & Yamamoto, 2012). In these applications, an
adversary can typically only make limited measurements and
actuations of the dynamics, but may be able to initiate a significant
propagative impact across the network (Roy et al., 2012; Sandberg
et al., 2010). By the same token, system operators may often
have limited measurement and actuation capabilities in reacting
to threats/disturbances, and their ability to mitigate the wide-
area threats via local feedback is of interest. The input–output
dynamics of network processes are also germane to management
and resource allocation problems in large-scale networks, where
limited control resources must be placed to shape global network
dynamics. A key need in these various application domains is to
understand the implications of the network’s graph topology on
the input–output dynamics and specifically its zeros, to achieve
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simple insights into propagative impacts and enable control
design.

Recently, several studies have begun to study the input–output
dynamics of network synchronization and spread processes from
a graph-theoretic perspective. Our work is closely alignedwith the
study of Briegel et al., which characterizes the zeros of a single-
input–single-output (SISO) system defined on a consensus (syn-
chronization) process (Briegel, Zelazo, Burger, & Allgower, 2011).
The authors focus particularly on symmetric unweighted network
topologies, and give bounds on finite-zero locations and conditions
for the presence of right-half-plane zeros. Meanwhile, our previ-
ous work pursues a structural decomposition of an input–output
dynamics imposed on a synchronization process (Abad Torres &
Roy, 2014), and uses this decomposition to achieve simple graph-
ical characterizations of the zeros. Motivated by vulnerability-
analysis goals, control theorists have also studied robustification of
synchronization processes via feedback (Vidyasagar & Yamamoto,
2012), characterized disturbance propagation (Koh & Vinnicombe,
2012), and highlighted linkages between graph connectivity and
network robustness (via the presence of non-trivial zero dynam-
ics) (Belykh et al., 2004; Pasqualetti et al., 2009, 2011).

This short paper is concerned with the input–output dynamics
of a class of continuous-time linear network processes defined
on a general (directed, weighted) graph, which is actuated at a
single network component and measured at another component
(see Section 2). For this SISO model, a full characterization of
the infinite- and finite-zeros in terms of the network’s graph
topology and the actuation/measurement locations is undertaken
(Section 4), using a structural decomposition for the input–output
dynamics (reviewed in Section 3). A significant result is that
networks with weak short paths as well as alternative long
strong paths between the input and output have non-minimum-
phase zeros. Some implications on feedback control of the
network dynamics are briefly discussed, particularly focusing on
destabilization through remote feedback.

2. Problem formulation

We are concerned about the input–output behavior of a
dynamical-network process that is actuated at a single network
component, and measured at a single component (which in
general may be remote from the stimulation location). Formally,
a network with n components, labeled 1, 2, . . . , n, is considered.
Each component is assumed tohave a scalar state x̃i associatedwith
it. These states evolve according to the differential equations:

˙̃x = Ax̃ + eiũ (1)

where x̃ =

x̃1 · · · x̃n

′ is the full state of the network, ei
is 0–1 indicator vector with ith entry equal to 1, ũ is a scalar
input signal at a single network component i, and the state
matrix A of the network dynamics is called the graph matrix. We
assume that the off-diagonal entries of the state matrix A are
nonnegative, and the diagonal entries are negative and satisfy
Ai,i ≤ −

n
j=1,j≠i Ai,j. Dynamicalmodels of this form are commonly

used to represent both natural and engineered network processes
(e.g., circuit dynamics, fluid-flow systems, satellite alignment). The
special case that Ai,i = −

n
j=1,j≠i Ai,j has been particularly well

studied, as a canonical model for synchronization or consensus
or diffusion. We stress that the matrix A need not be symmetric.
The state of one component, say component nWLOG, is measured.
Thus, the observation or output ỹ of the dynamical network is given
by:

ỹ = e′

nx̃. (2)

Eqs. (1) and (2) together specify a SISO network process.

A weighted digraph G with n vertices is associated with the
network dynamics, where each vertex i = 1, 2, . . . , n in the
graph corresponds to the network component i. Formally, an arc
(directed edge) is drawn from vertex i to vertex j in the graph
(i, j distinct) if and only if Aj,i ≠ 0, and is assigned a weight of
Aj,i. The vertices corresponding to the input and output network
components are referred to as the input and output vertices. The
state matrix −A can be viewed as (the transpose of) a Laplacian
or grounded Laplacian matrix associated with the graph, per our
definition.

Our goal is to characterize the zeros of the SISO system (1) and
(2) in terms of the digraphG and the input/output locations. Specif-
ically, we seek graph-theoretic conditions under which the infinite
zeros (asymptotes of the positive root-locus branches) are in the
left- or right-half plane. Also, graph-theoretic characterizations of
the number and locations of the finite zeros are sought. These re-
sults then imply myriad limits on feedback control (e.g., on perfect
tracking) imposed the graph topology, as we will discuss briefly.
As a particular application, wewill draw on graph-theoretic condi-
tions for nonminimum-phase dynamics to determine when static
negative feedback ũ = −Kỹ yields instability.

3. Background

In Abad Torres and Roy (2014), we used the special coordinate
basis (SCB) for linear systems (Sannuti & Saberi, 1987) to obtain
some preliminary structural results on the zeros of the SISO
network model ((1) and (2)), which are foundational to the graph-
theoretic results developed here. The SCB is a convenient tool
for the graph-theoretic analysis of zeros, because it provides
an explicit matrix-algebraic characterization of a system’s zero
structure. Specifically, the SCB expresses a linear system as two
feedback-interconnected subsystems: (1) an integrator chain that
is directly driven by the system input and directly impacts the
output, and (2) a zero dynamics that is neither directly driven
by the input nor directly affects the output. The transformation
of (1) and (2) into the SCB and resultant structural analyses
are summarized in the following list (Abad Torres & Roy, 2014).
The development uses standard terminology related to finite
and infinite zeros, and zero dynamics, please see Chen, Lin, and
Shamash (2004), Kouvaritakis and Edmunds (1979) and Sannuti
and Saberi (1987).

(1) The relative degree (number of infinite zeros) is given by nd =

d + 1, where d is the distance from the input to the output
vertex in G (see also Briegel et al., 2011 and Reinschke, 1988).
In the SCB formulation, the states associated with the vertices
in the shortest directed input–output path form the chain of nd
integrators. Let us call this path the special input–output path.

(2) The dimension of the zero dynamics (number of finite zeros)
is na = n − d − 1. The states of the zero dynamics can be
defined via a transform of the states corresponding to vertices
that are not on the special input–output path. We define a set
V1 containing these na vertices. We also use the notation G1 for
the induced subgraph of G on V1. WLOG, the vertices on the
special input–output path are labeled n − d, n − d + 1, . . . , n,
where vertex n − i is at a distance i to the output, while the
vertices in V1 are labeled 1, 2 . . . , na.

(3) The network’s finite-zero dynamics is given by:

x0 = Aaax0 +


nd−1
i=0

And−i−1
aa AnadZ

−1
nd end−i


ỹ (3)

where Aaa = Ana − ∆ and ∆ = AnadZ
−1
nd Znad . The matrix Ana is a

principal submatrix of the A formed by the rows and columns
corresponding to the vertices in V1. The matrix Anad is an off-
diagonal submatrix of A, while Z−1

nd and Znad can be computed
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