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a b s t r a c t

This study addresses the set stability of Boolean networks (BNs) and set stabilization of Boolean control
networks (BCNs). Set stability determines whether a BN converges to a given subset, whereas set
stabilizability addresses the issue of whether a BCN can be stabilized to a given subset. Many problems
can be viewed as special cases of set stability and set stabilization, including synchronization, partial
stability, and partial stabilization problems. The concepts of invariant subset and control invariant subset
are introduced. Then, algorithms for the largest invariant subset and the largest control invariant subset
contained in a given subset are proposed. Based on the invariant subsets obtained, the necessary and
sufficient conditions for set stability and set stabilizability are established, and formulae are provided to
calculate the shortest transient periods for respective initial states. A design procedure is proposed for
finding all the time-optimal set stabilizers. Finally, an example is used to show the application of the
proposed results to the synchronization problem of BNs.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Boolean Network (BN) was first proposed by Kauffman
in order to model genetic regulatory networks (Kauffman, 1969,
1993) and has become a powerful tool in describing, analyzing
and simulating cellular networks. The Boolean network finds
applications in many fields and has been extensively studied in
recent years. See for instance Akutsu, Hayashida, Ching, and Ng
(2007), Akutsu, Miyano, and Kuhara (1999), Albert and Barabási
(2000), Aldana (2003), Heidel,Maloney, Farrow, and Rogers (2003),
Shmulevich, Dougherty, Kim, and Zhang (2002), Shmulevich,
Dougherty, and Zhang (2002).

Recently, Cheng presented a new matrix product called the
semi-tensor product (STP), which has proven to be very suitable
for the analysis and design of BNs (Cheng, 2007; Cheng & Qi,
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2010a). Under the framework of STP, any logical function can be
equivalently expressed in multi-linear form, allowing a BN to be
converted into a discrete-time linear system. The STP has been
successfully used to solve many analysis and design problems of
Boolean control networks (BCNs) andmulti-valued logical systems.
See for instance Cheng (2009, 2011), Cheng, Feng, and Lv (2012),
Cheng and Qi (2009, 2010b), Cheng, Qi, Li, and Liu (2011), Cheng,
Qi, and Li (2011b), Cheng and Zhao (2011), Laschov and Margaliot
(2011, 2012), Li and Cheng (2010), Li and Sun (2011), Li, Sun, and
Wu (2011), Qi, Cheng, and Hu (2010),Wang, Zhang, and Liu (2012),
Xu and Hong (2013), Zhao and Cheng (2013), Zhao, Li, and Cheng
(2011) and Zhao, Qi, and Cheng (2010). For a complete introduction
to the STP and its applications in different fields, we recommend
Cheng, Qi, and Li (2011a) and Cheng, Qi, and Zhao (2012).

The stability and stabilization of BNs are two basic problems
that have been investigated in recent years under the framework
of STP (Cheng, Qi, Li et al., 2011; Fornasini & Valcher, 2013;
Li, Yang, & Chu, 2013, 2014; Qi et al., 2010). In some cases,
interest lies in whether a system or a collection of interconnected
systems converges to or can be stabilized to a subset of the
state space, instead of to a single point. In this study, these are
termed set stability and set stabilization, respectively. A typical
example of set stability is the synchronization of a collection of
locally interconnected systems. Synchronization phenomena are
observed in many kinds of complex networks including physical,
biological, chemical, technological, and social systems. See for
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example Arenas, Díaz-Guilera, Kurths, Moreno, and Zhou (2008),
Garcia-Ojalvo, Elowitz, and Strogatz (2004), Li and Chu (2012), Li,
Duan, Chen, and Huang (2010), Morelli and Zanette (2001) and
Parriaux, Guillot, andMillérioux (2011) and the references therein.
One of themost spectacular biological examples is provided by the
synchronized flashing of fireflies observed in nature (Buck, 1938).
A range of models has been proposed to model the synchronizing
mechanism (Mirollo & Strogatz, 1990; Smith, 1935). Boolean
networks have been a focus of attempts to describe collective
behavior of this kind in biological networks (Krawitz& Shmulevich,
2009; Teuscher & Capcarrere, 2003).

Until recently, the lack of appropriate mathematical tools made
characterizing the synchronization of BNs a challenge. However,
the use of STP ofmatrices (Hong & Xu, 2010) has provided a strictly
mathematical treatment for the synchronization problem of BNs
for the first time, and many novel results have been reported in
the recent literature (Li & Chu, 2012; Li & Lu, 2013; Li, Yang, & Chu,
2012; Xu & Hong, 2013; Zhong, Lu, Huang, & Cao, 2014).

Another problem that frequently arises in systems biology is to
determine whether the state variables of a system converge or can
be stabilized (Rouche, Habets, Laloy, & Ljapunov, 1977). These two
characteristics, termed partial stability and partial stabilization,
have been applied to the analysis of consensus in multi-agent
systems (Chen, Ge, & Zhang, 2014), and can also be used to
characterize the stability of Boolean networks subject to external
disturbances, as in Example 3 of this study. Recent developments
have been reviewed in Chen and Sun (2014).

This study investigates the set stability and set stabilization
of BNs and BCNs, respectively, providing a unified framework for
treating a range of problems, including those already mentioned.
The main points are as follows:

• The key concepts proposed in this study are the invariant subset
for BNs and the control invariant subset for BCNs. It is shown
that a BN/BCN is stable/stabilizable with respect to a given
subset M if and only if it is stable/stabilizable with respect to
the largest invariant subset/the largest control invariant subset
contained in M. Iterative algorithms for the largest invariant
subset and the largest control invariant subset contained in a
given set are proposed. These form the key steps in solving set
stability and stabilizability problems.

• Based on the largest invariant subset algorithms, the necessary
and sufficient conditions for set stability and set stabilizability
are obtained. One of the advantages of the invariant subset-
based results obtained in this study is that they can be used to
determine the shortest transient periods for respective initial
states.

• A design procedure is proposed to calculate all the time-
optimal feedback stabilizers. For any given set stabilizable BCN,
a Boolean matrix characterizing all the time-optimal feedback
gains is obtained. A logical matrix is a time-optimal feedback
gain if and only if it is a logical sub-matrix of the obtained
Boolean matrix.

This paper is arranged as follows. In Section 2, some basic con-
cepts and notations are introduced. In Section 3, the problems of
set stability and set stabilizability are defined. This section also
discusses how the problems of synchronization, node synchroniza-
tion, and partial stability of BNs are restated as problems of set
stability and set stabilization. Section 4 investigates the largest
(control) invariant subsets contained in a given subset. In Section 5,
criteria for set stability and set stabilizability are discussed. Sec-
tion 6 proposes a procedure to obtain all the time-optimal set sta-
bilizers. In Section 7, an example of BN synchronization is provided
and concluding remarks are made in Section 8.

2. Preliminaries

2.1. Notations and definitions

• |M| represents the cardinal number of the set M.
• Z>0 and Z≥0 represent the set of positive and nonnegative

integers, respectively.
• Coli(A) and Rowj(A) represent the ith column and the jth row of

the matrix A, respectively. Col(A) and Row(A) represent the set
of columns and rows of A, respectively.

• D := {T = 1, F = 0} represents the logical domain.
• Bn×m represents the set of n × m Boolean matrices, i.e., all of

the matrices X = (xij) with xij ∈ D .
• In represents the n × n identity matrix, 1n := (1 1, . . . 1)T .
• δi

n := Coli(In), δ0
n := 0n×1, ∆n := Col(In). In particular, δ1

2
and δ2

2 represent the vector forms of the logical values T and
F , respectively.

• δn[j1, . . . , jm] represents the Boolean matrix A ∈ Bn×m with
Coli(A) = δ

ji
n .

• W [m, n] represents the swap matrix with index [m, n] defined
by W [m, n] := [In ⊗ δ1

m, In ⊗ δ2
m, . . . , In ⊗ δm

m], where ⊗

represents the Kronecker product.
• Ln×m represents the set of n × m logical matrices, i.e., all of the

matrices A with Col(A) ⊆ ∆n.
• A n B represents the semi-tensor product (STP) of matrices A

and B defined by A n B = (A ⊗ Iα/n)(B ⊗ Iα/p), where n =

|Col(A)|, p = |Row(B)|, and α is the least common multiple of
n and p. When n = p, the STP degenerates to the conventional
productAB. Thus, the symbolnmaybe omittedwithout causing
confusion.

• Assume that X = (xij), Y = (yij) ∈ Bm×n. Then X ∧ Y :=

(xij∧yij), X∨Y := (xij∨yij). The symbols ‘‘∨’’ and ‘‘∧’’ represent
the logical operators OR and AND, respectively.

• The Boolean addition of Boolean matrices is defined as
α +B β := α ∨ β, ∀α, β ∈ D

(B)

n
i=1

αi := α1 ∨ α2 ∨ · · · ∨ αn, ∀αi ∈ D

X +B Y = (xij +B yij) ∈ Bm×n, ∀X, Y ∈ Bm×n.

• For any X ∈ Bm×n, Y ∈ Bn×p, the Boolean product of X and
Y is defined as X nB Y := Z = (zij)m×p ∈ Bm×p with zij =

(B)
n

k=1 xik ∧ ykj.
• For X ∈ Bn×n, the Boolean powers are defined as

X (k)
:= X nB X nB · · · nB X  

k

, ∀k ∈ Z>0.

Especially, X (0)
:= In.

• RowΣ (M) and ColΣ (M) represent the Boolean summations of
rows and columns of the Boolean matrixM , respectively.

• For any F ∈ Bm×n, a logical matrix F ∈ Lm×n is called a logical
sub-matrix of F if F ∧F = F . Denote by S (F) the set of all of the
logical sub-matrices of F, i.e., S (F) := {F ∈ Lm×n

 F ∧ F = F}.
Especially, for any nonzero x ∈ Bm×1, S (x) = {z ∈ ∆m


z ∧ x = z}. For convenience, define S T (x) := S (xT ) for any
x ∈ B1×n.

2.2. Algebraic forms of BNs and BCNs

A BN with n nodes is described as
A1(t + 1) = f1(A1(t), . . . , An(t))
...
An(t + 1) = fn(A1(t), . . . , An(t))

(1)
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