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a b s t r a c t

In this paper a new distributed feedback strategy is proposed for controlling a rigid, acyclic formation
of kinematic point-modeled mobile autonomous agents in the plane. The strategy makes use of a new
concept called a ‘‘target point’’ and is applicable to any two-dimensional, acyclic formation whose
underlying directed graph can be generated by a sequence of Henneberg vertex additions. It is shown that
the method can cause a group of agents starting in any given initial positions in the plane to move into
a prescribed formation exponentially fast provided the formation’s designated leader and first follower
start in different positions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent formations have been employed to perform tasks
such as surveillance (Diehl, Satharishi, Hampshire, & Khosla, 1999),
exploration (Burgard,Moors, Fox, Simmons, & Thrun, 2000), search
and rescue (Shiroma, Chiu, Sato, & Matsuno, 2005), ocean sam-
pling (Leonard et al., 2007) and space missions (Krieger, Hajnsek,
Papathanssiou, Younis, & Moreira, 2010). By a multi-agent forma-
tion is meant a collection of autonomous agents in which the dis-
tance between every pair of the agents is a prescribed constant
as time evolves. Assuming the kinematic model of each agent
is a single integrator (Krick, Broucke, & Francis, 2009), double-
integrator (Olfati-Saber & Murray, 2002) or nonholonomic (Desai,
Ostrowski, & Kumar, 2001), the problem of distributed formation
control is to maintain a multi-agent formation by choosing a con-
trol input for each agent using the agent’s local sensed informa-
tion about its neighbors. The local measurement of each agent can
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be range only (Cao, Yu, & Anderson, 2011), bearing only (Basiri,
Bishop, & Jensfelt, 2010) or relative positions (Dorfler & Francis,
2010).When amulti-agent formation is rigid (Anderson, Yu, Fidan,
& Hendrickx, 2008; Asmimow & Roth, 1979), the formation can
be achieved by maintaining the desired distances between some
chosen pairs of agents. If each such distance in a formation ismain-
tained by both associated agents, the formation is undirected; oth-
erwise, it is directed, in which the agent assigned with the task of
maintaining the desired distance is called a follower and the other
agent is correspondingly called its leader.

In the research line of controlling undirected formations,
perhaps the most comprehensive distributed method based on
rigidity is the gradient control proposed in Krick et al. (2009). It has
been shown by center manifold theory that the gradient control
locally stabilizes a large class of rigid undirected formations.
Recent studies in Belabbas, Mou, Morse, and Anderson (2012),
Helmke,Mou, Sun, andAnderson (2014) andMou,Morse, Belabbas,
Sun, and Anderson (in press) have revealed that undirected
formations are problematic in the sense that they will rotate in
the plane under the gradient control if there exists inconsistency
in neighboring agents’ distance measurements. Although progress
to fix such an issue has recently been made in Mou, Morse, and
Anderson (2014), Mou and Morse (2014) and Marina, Cao, and
Jayawardhana (2015), how to achieve robustness in controlling
rigid undirected formations under inconsistent measurements
between neighboring agents is still an open problem. Growing
interests have then been given to directed formations because
of their known additional advantage of less usage of sensing
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and communication capabilities. Along this direction, sufficient
and necessary graphical conditions have been derived for driving
directed formations to a rendezvous point or a line (Lin, Francis,
& Maggiore, 2005); switching has been introduced in the control
design to stabilize a class ofminimal persistent directed formations
in Fidan, Gazi, Zhai, Cen, and Karatas (2013) and Sandeep, Fidan,
and Yu (2006); and a virtual leader strategy has been employed
in Ogren, Egerstedt, and Hu (2002). However, controlling directed
formations in a distributed manner is challenging even for a
four-agent formation consisting of two cycles (Belabbas, 2013).
Instead of attacking the problem of controlling directed formations
in general, researchers have recently focused on the class of
minimally rigid acyclic formations (Baillieul & Suri, 2003; Ding,
Yan, & Lin, 2010; Fidan et al., 2013;Mou et al., 2011; Sandeep et al.,
2006).

The authors of Cao, Morse, Yu, Anderson, and Dasgupta (2011)
have shown that the gradient control is able to stabilize an
acyclic triangular formation if the three agents are not initialized
collinear. Otherwise, the formationwill drift to infinitywith agents
remaining in collinear positions. One reason for the difficulty
in the global analysis of gradient control is the possibility of
the formation converging to some equilibria determined by the
local minima of the associated potential functions calculating
the gradient. What this implies in terms of the evolution of the
formation shape dynamics is that there are initial agent positions
thatmay lead to incorrect formation shapeswhen agents are under
gradient control. For example, a four-agent minimally rigid acyclic
formationwill fail to converge to its desired shape if its three-agent
sub-formation starts with a wrong orientation. Thus there is an
urgent need to look at other types of control to overcome these
problems and complements the existing gradient control. And this
is exactly the aim of this paper.

In this paper we utilize the idea of having the follower agents
tracking their ‘‘target points’’, which are the desired relative
positions for the follower agent to move to, to develop another
type of formation control. Note that in a minimally rigid acyclic
formation there is one agent called the global leader, which has
no leader to follow, one agent called the first follower, which only
follows the global leader, and each of all the other agents has
exactly two leaders (Hendrickx, Anderson, Delvenne, & Blondel,
2007). In the followingwewill consider the casewhen an agent has
one leader and the case when an agent has two leaders, separately,
and propose a distributed control based on target points for both
cases. Such analytical results will then be further used to prove
the main result of this paper, namely, the proposed target-point
control is able to drive minimally rigid acyclic formations to
converge to their desired shapes as long as the global leader and
the follower are not coincident.

2. Problem formulation

Consider the class of minimally rigid acyclic formations in the
plane consisting of n ≥ 2 mobile autonomous agents. It has
been shown in Hendrickx et al. (2007) that any such an n-agent
formation can be generated by the Henneberg vertex addition
operations. And in addition that the agents can be labeled such
that starting from a two-agent directed formation in which agent
2 follows agent 1, one adds in sequence an agent i, 3 ≤ i ≤ n,
which chooses two agents i, j ∈ {1, 2, . . . , i − 1} as its leaders.
We further suppose the distance between a follower and any of
its leaders and the distance between the two leaders of agent i,
i = 3, 4, . . . , n are positive. We call this class of formations vertex-
addition formations. For example, the formations in Fig. 1(a)–(c) are
vertex-addition formations while the one in Fig. 1(d) is not.

Assume each agent’s motion in the plane is described by a
simple kinematic point model

ẋi = ui, i = 1, 2, . . . , n, (1)

Fig. 1. Minimally rigid directed formations.

Fig. 2. Target points in the one-leader case.

where xi ∈ R2 denotes the position of agent i and ui denotes agent
i’s control input. Suppose each agent i’s local measurements are
xi − xj, the relative position away from each of its leader j. The goal
of distributed formation control is to design ui using agent i’s local
measurements such that the formation converges to its desired
shape, that is, the distances between agent i, i = 2, . . . , n and each
of its leader converge to the prescribed constants respectively, and
each agent i, i = 3, 4, . . . , n and its two leaders are in desired
clockwise or counter-clockwise orientation.

3. Target-point control

In a vertex-addition formation, a follower agent has atmost two
leaders. In the followingwewill devise target-point controls for the
follower for both the one-leader case and the two-leader case.

3.1. One-leader case

Consider a two-agent directed formation in the plane with one
follower and one leader, whose positions are denoted by x, y ∈

R2, respectively. Suppose the follower’s motion in the plane is
modeled by ẋ = u. The goal in this case is to choose u in terms of the
follower’s local measurement x− y such that ∥x− y∥ converges to
the desired constant d. To accomplish this we define the following
target point

τ(x, y) =

x +
∥y − x∥ − d

∥y − x∥
(y − x), x ≠ y;

y +

d 0

′
, x = y,

which is indicated by a black square in Fig. 2.
Note that the target point τ(x, y) is such that ∥τ(x, y) − y∥ =

d. One way to move the follower to keep d distance away from
its leader is to drive x to converge to τ(x, y). Inspired by this
observation, we choose

u = −λ(x − τ(x, y)),

where λ is a non-negative parameter to be designed such that the
control u is continuous. One choice for λ is

λ = ∥y − x∥(∥y − x∥ + d),

which leads to the following target-point control in one-leader case

u = −(∥x − y∥2
− d2)(x − y). (2)

Note that the target-point control (2) is distributed in the
sense that its implementation only requires the follower’s local
measurement x − y, and nothing else.
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