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a b s t r a c t

This work proposes a novel Q-learning algorithm to solve the problem of non-zero sum Nash games
of linear time invariant systems with N-players (control inputs) and centralized uncertain/unknown
dynamics. We first formulate the Q-function of each player as a parametrization of the state and all other
the control inputs or players. An integral reinforcement learning approach is used to develop amodel-free
structure ofN-actors/N-critics to estimate the parameters of theN-coupled Q-functions online while also
guaranteeing closed-loop stability and convergence of the control policies to a Nash equilibrium. A 4th
order, simulation example with five players is presented to show the efficacy of the proposed approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Most game-based (Basar & Olsder, 1999) control system de-
sign techniques rely on complete knowledge of the systems to
be controlled. This is not the case when the entire system is not
modeled exactly or some parameters are uncertain or completely
unknown and for that reason one has to findmore intelligent tech-
niques that can still guarantee optimal performance and closed-
loop stability. Reinforcement learning (RL) (Sutton & Barto, 1998)
is a machine learning approach that is developed primarily for
systems with discrete dynamics and actions. In the control liter-
ature, the field where RL methods are studied is called approxi-
mate dynamic programming (ADP). There is a substantial work on
ADP for discrete-time systems, that solve mostly optimal regula-
tion and tracking problems with policy iteration algorithms (Liu
& Wei, 2014), value iteration algorithms (Wei, Wang, Liu, & Yang,
2014) and other iterative algorithms (Wei & Liu, 2014b). The effi-
ciency of such algorithms has been shown extensively in several
practical problems, e.g. Wei and Liu (2014a,c). There are several al-
gorithms for continuous-time systems based on ADP and optimal
adaptive control (Bertsekas & Tsitsiklis, 1996; Busoniu, Babuska,
deSchutter, & Ernst, 2010; Lewis, Vrabie, & Vamvoudakis, 2012;
Powell, 2007; Vrabie, Vamvoudakis, & Lewis, 2012; Zhang, Liu, Luo,
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&Wang, 2012) that can achieve the desired controller performance
but rely on complete or partial knowledge of the dynamics or use
identifiers to approximate unknown functions. One other obvious
solution to get from continuous state space to discrete, and apply
well known RL techniques (Sutton & Barto, 1998), is to quantize
the state space, in a form of state aggregation. But one of the pit-
falls of such a quantization approach is that the solution found is
probably suboptimal since due to quantization the set of actions
is reduced and hence the optimal policy for the continuous-time
problem may not be in the obtained set of actions. Moreover dis-
cretization of a continuous state space system may cause the for-
feit of the Markovian properties of the process and as a result the
convergence proofs may no longer be valid. Game theory (Basar
& Olsder, 1999; Tijs, 2003; Vrabie et al., 2012), provides an ideal
environment to study multi-player decision and control problems
(e.g. coupled large-scale systems), and offers a wide range of chal-
lenging and engaging problems. Since each controller wants to
minimize its own cost function, Nash strategy offers a nice frame-
work to study control robustness. In continuous-time linear sys-
temswithmultiple decisionmakers and quadratic costs, one has to
rely on solving complicated coupled matrix Riccati equations that
require complete knowledge of the system matrices and need to
be solved offline and then implemented online in the controller. In
the era of complex and big data systems, modeling the processes
exactly is most of the time infeasible and offline solutions make
the systems vulnerable to parameter changes (drift) and adver-
sarial attacks. There is a need for intelligent algorithms that self-
heal, resist attacks, and allow dynamic optimization. Q-learning is
a model-free RL technique developed primarily for discrete-time
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systems (Watkins & Dayan, 1992). It learns an action-dependent
value function that ultimately gives the expected utility of tak-
ing a given action in a given state and following the optimal pol-
icy thereafter. When such an action-dependent value function is
learned, the optimal policy can be computed easily. The biggest
strength of Q-learning is that it is model free. It has been proven
in Watkins and Dayan (1992) that for any finite Markov Decision
Process, Q-learning eventually finds an optimal policy. In complex-
systemsQ-learning needs to store a lot of data, whichmakes the al-
gorithm infeasible. This problem can be solved effectively by using
adaptation techniques. Specifically, Q-learning can be improved by
using the universal function approximation property of neural net-
works (NNs) and especially in the context of ADP (Werbos, 1992)
or neuro-dynamic programming (Bertsekas & Tsitsiklis, 1996) that
allow us to solve difficult optimization problems online and for-
ward in time. Thismakes it possible to apply the algorithm to larger
problems, even when the state space is continuous, and infinitely
large.

Related work

The work of Freiling, Jank, and Abou-kandil (1996) proposes
global existence results for the solutions of coupled-Riccati
equations in closed-loop Nash games but with known dynamics
and without proper convergence and stability proofs. On the other
side the authors in Jungers, Castelan, De Pieri, and Abou-Kandil
(2008) design robust controllers, inspired by a Nash strategy for
systems with polytopic representation of uncertainty. An online
method for solving coupled Hamilton–Jacobi equations (coupled-
Riccati equations in linear systems) of deterministic nonlinear
systemswith known dynamics has been proposed in Vamvoudakis
and Lewis (2011) alongwith stability and performance guarantees.
In Xu and Xiao (2013) the authors propose an iterative refinement
algorithm along with fully mathematical justifications, which
sharpensmatrix solution upper bounds for the continuous coupled
algebraic Riccati equations. The work of Limebeer, Anderson, and
Hendel (1994) provides necessary and sufficient conditions for
the existence of a solution to the mixed H2/H∞ problem in the
infinite horizon case in terms of the existence of solutions to
a pair of cross-coupled algebraic Riccati equations. The authors
in Al-Tamini, Abu-Khalaf, and Lewis (2007), have proposed a
sequential update Q-learning approach to solve zero-sumgames in
systems with discrete dynamics. In the same manner, the work of
Kiumarsi, Lewis, Modares, Karimpour, and Naghibi-Sistani (2014)
proposes a Q-learning framework to solve the optimal tracking
problem of discrete time systems. The author in Littman (2001)
has investigated 2-player zero-sum Markov games and proposed
minimax Q-learning based methods that do not require explicit
knowledge of the environment. Based on the work of Littman
(2001), the authors in Hu and Wellman (2003) and Suematsu
and Hayashi (2002) propose a Q-learning algorithm for multi-
agent systemswhere the agents choose Nash-equilibrium policies.
Specifically for (Hu & Wellman, 2003) the authors have some
highly restrictive assumptions on the form of stage games during
learning, to guarantee convergence. Whereas in Suematsu and
Hayashi (2002) the authors maintain large Q-tables for all agents
and provide convergence to a Nash equilibrium when all agents
are adaptable, otherwise convergence to an optimal response
equilibrium is achieved. A pursuit evasion game between a plane
and amissile by usingminimaxQ-learning has been investigated in
Harmon, Baird, and Klopf (1995). Continuous-time systems on the
other side lack a proper completely mode-free non-Zero sumNash
game formulation due to dependencies to the system matrices
of the optimal controllers and the coupled Riccati equations. For
that reason, most of the times one has to rely on discretization
of the state and the action space to apply such techniques, and

as such lose important information during discretization. Some
initial work on Q-learning for continuous time systems has been
investigated in Baird (1994) and Doya (2000) but without any
convergence and stability guarantees. The authors in Mehta and
Meyn (2009) have established connections between Q-learning
and nonlinear control of continuous-time models with general
state and action space by observing that the Q-function developed
in Watkins and Dayan (1992) is an extension of the Hamiltonian
that appears in the minimum principle. A non-synchronous ϵ-
integral Q-function has been used to propose an ϵ-approximate
Q-learning framework for solving the linear quadratic regulator
problem of continuous-time systems in Young Lee, Bae Park, and
Ho Choi (2012). The authors in Young Lee et al. (2012) require
lots of computations due to index iterations, cannot guarantee
robustness and only prove uniform ultimate boundedness of
the closed-loop system. The work of Xu, Zhao, and Jagannathan
(2014) proposes a Q-learning approach to solve the finite-horizon
optimal control problem which eventually reduces to solve the
differential Riccati equation whereas in the present paper we
solve the coupled algebraic Riccati equations. The authors of
Palanisamy, Modares, Lewis, and Aurangzeb (2015) propose a Q-
learning approach to solve the continuous-time infinite-horizon
optimal control problem by writing the Q-function with respect
to the state, the control input and the derivatives of the control
input. The algorithm proposed in Palanisamy et al. (2015) uses
iterations as in Young Lee et al. (2012) on the value function to
solve the problem while the proposed algorithm of the current
paper will solve the more difficult problem of learning multiple
value functions in a synchronous manner. The algorithm in this
paper shall be more aligned with the adaptive control setting
(Ioannou & Fidan, 2006; Tao, 2003).

Contributions

Since solving Nash game requires complete knowledge of the
centralized system dynamics and complicated offline computa-
tion, thiswork proposes a completelymode-free algorithm to solve
the coupled Riccati equations arising inmulti-player non-zero sum
Nash games in deterministic systems. The contributions of the
present paper are fourfold. First, a parameterized Q-function is
derived for every of the N-players in the game that depends on
the state and the control inputs of all the players. Second, we de-
rive mode-free controllers based on the Q-functions parametriza-
tion, andwe prove that by employingN-coupledminimizations on
the derived Q-functions, the controllers form a Nash equilibrium.
Third, in order to solve the coupled optimizations problems in an
efficient way by overcoming the curse of dimensionality problem,
we use 2N-universal approximators such as NNs to approximate
the cost and the control of every player, by usingnamely a critic and
an actor NN. Fourth, we prove asymptotic stability of the closed-
loop signals and convergence to a Nash equilibrium by using rigor-
ous Lyapunov-based proofs.

Structure

The remainder of the paper is structured as follows. Section 2
formulates the multi-player non-zero sum game for systems
with linear-time invariant dynamics while Section 3 provides a
brief background on the existence of a Nash equilibrium. Since
Section 3 relies on complete knowledge of the system and input
matrices, Section 4 provides a model-free formulation based on
a Q-learning approach and a structure based on N-critic and N-
actors, to estimate the parameters of each player’s Q-function. The
effectiveness of the proposed approach is illustrated in Section 5
through a simulation result with unknown dynamics. Finally
Section 6 concludes and talks about future work.
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