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a b s t r a c t

This paper focuses on sensor scheduling for state estimation, which consists of a network of noisy sensors
and a discrete-time linear system with process noise. As an energy constraint, only a subset of sensors
can take a measurement at each time step. These measurements are fused into a common state estimate
using a Kalman filter and the goal is to schedule the sensors tominimize the estimation error at a terminal
time. A simple approach is to greedily choose sensors at each time step to minimize the estimation error
at the next time step. Recent work has shown that this greedy algorithm outperforms other well known
approaches. Results have been established to show that the estimation error is a submodular function of
the sensor schedule; submodular functions have a diminishing returns property that ensures the greedy
algorithm yields near optimal performance.

As a negative result, we show that most commonly-used estimation error metrics are not, in general,
submodular functions. This disproves an established result. We then provide sufficient conditions on the
system forwhich the estimation error is a submodular function of the sensor schedule, and thus the greedy
algorithm yields performance guarantees.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sensor scheduling problems arise in applications involving
the long-term estimation of a physical process through a set of
static sensors. Examples include monitoring CO2 concentrations
(Weimer, Sinopoli, & Krogh, 2008) and monitoring water levels in
multiple tanks (Weimer, Araújo, Hernandez, & Johansson, 2011)
using a wireless sensor network. In such long-term deployments,
energy consumption is a priority and by turning on only a small
subset of sensors at each time-step, the battery life of the network
can be extended.

Sensor scheduling can be described as follows. We are given a
discrete-time linear dynamical system xt+1 = Axt +wt , where xt is
the n-dimensional state vector and wt is zero mean Gaussian pro-
cess noise with known covariance. The goal is to estimate the state
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xt through the use of m sensors. Each sensor takes a noisy scalar
measurement of the state xt , where the noise is zero mean Gaus-
sian. A known covariance matrix gives the correlation between
sensor noises. At each time step in this sensor scheduling prob-
lemwe can activate at most k < m sensors to take ameasurement.
Sensors that are inactive at a particular time step can then sleep,
extending their battery life. After each time step t , the k measure-
ments are fused into a single state estimate x̂t|t with covariance
Σt|t using a centralized Kalman filter.

Given an initial covariance Σ0 a terminal time T , and a sensor
schedule σ , the final covariance ΣT |T is uniquely defined. The
quality of a sensor schedule σ is determined as a function of this
final covariance: for example the trace, the largest eigenvalue, or
the determinant. Each objective can be thought of as a function that
takes as input (Σ0, σ ) and outputs a real number. Our goal is to
compute the schedule σ that minimizes/maximizes this objective
function.

Related work: The sensor scheduling problem (or equivalently,
the actuator scheduling problem) dates back at least as far as the
early 1970s (Athans, 1972). Early work cast the problem in an
optimal control framework and computed optimal schedules via
dynamic programming. The drawback with this approach is that
the computation grows exponentially with the terminal time T .
In the last decade there has been a resurgence in work on sensor
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scheduling. A catalyst for this was the study of Kalman filtering
with intermittent observations (Sinopoli et al., 2004). Based on this
work, the authors in Gupta, Chung, Hassibi, and Murray (2006)
provided a method for stochastically selecting measurements via
random walk on an appropriately optimized Markov chain.

A variety of approaches have since been proposed for sensor
scheduling, including approaches based on convex optimization
(Joshi & Boyd, 2009), quadratic programming (Mo, Ambrosino,
& Sinopoli, 2011), and tree pruning (Vitus, Zhang, Abate, Hu, &
Tomlin, 2012). The work in Mo et al. (2011) presents a general
framework that allows one to include more complex network
and energy constraints. Recent work has looked at periodic
schedules (Orihuela, Barreiro, Gómez-Estern, & Rubio, 2014),
on the connection between the sensor selection problem and
compressed sensing (Carmi & Gurfil, 2013), on provably complete
algorithms (Jawaid & Smith, 2014a), and on consensus-based
algorithms that remove the need for a centralized filter (Yang,
Chen, Wang, & Shi, 2014).

Greedy algorithms and submodularity: The focus of this paper
is on recent work that has shown advantages of using simple
greedy algorithms for computing sensor schedules. At each time
step t , the greedy algorithm chooses k sensors to minimize the
estimate error at time t + 1. The procedure begins at time step
1, and is repeated until all T time steps of the schedule have been
specified. Being greedy, the approach is computationally efficient
and simple to implement. Moreover, it has been shown (Shamaiah,
Banerjee, & Vikalo, 2010, 2012) that the k sensors chosen at a
single time step yield a reduction in estimation error that is
within a constant factor of the optimal reduction. This property
is due to the submodularity (Fisher, Nemhauser, & Wolsey, 1978;
Nemhauser, Wolsey, & Fisher, 1978) of the covariance objective
function over a single time step. In addition, empirical results
in Shamaiah et al. (2010) have shown that the greedy algorithm
often outperforms more computationally intensive alternatives
based on convex optimization (Joshi & Boyd, 2009) over multiple
time steps. In Huber, Kuwertz, Sawo, and Hanebeck (2009), a
simulation study is performed for estimating a 31-state dynamical
system that models a temperature diffusion process using sensor
networks containing 20–40 sensors. The study compared three
algorithms: the greedy algorithm, an optimal schedule based on
exhaustive search, and a receding horizon approximate schedule.
They found empirically that the runtime of the greedy algorithm
was orders ofmagnitude better than the other two approaches, and
the estimation performance exceeded that of the receding horizon
approach. The authors also provided theoretical performance
guarantees of the greedy algorithm.

In this paper we explore inmore depth the connection between
sensor scheduling, submodularity, and greedy algorithms. We
characterize conditions under which the greedy algorithm gives
provable performance guarantees by studying the submodularity
of sensor scheduling objective functions.

Contributions: The contributions of this paper are two-fold. First,
we provide negative results to show that most sensor schedule
objective functions are not, in general, submodular nor monotone
functions. This result holds for objectives including the trace
of the covariance, the maximum eigenvalue and the log of the
determinant, and it disproves the guarantees established in Huber
et al. (2009). Second, we provide a set of (restrictive) conditions
on the system under which the log of the determinant objective
function is submodular, and thus the greedy algorithm has
guaranteedperformance. An early version of this paper appeared at
the conference (Jawaid & Smith, 2014b). This paper expands on the
preliminary version in several respects, including complete proofs
of all results, details on the submodular counterexamples, and a
new interpretation of sensor scheduling in terms of a submodular
function over a matroid constraint in Section 6.1.

2. Preliminaries

In this section we review some essential concepts in submodu-
lar set functions from Fisher et al. (1978), Nemhauser et al. (1978)
and submodular sequence functions from Alaei and Malekian
(2010) and Golovin and Krause (2011).

2.1. Independence systems and matroids

Many combinatorial optimization problems can be formulated
as maximizing or minimizing an objective function f : F → R
over a set system (E, F ). The set F ⊆ 2E contains all ‘‘allowable’’
subsets of the base set E. An independence system is a set system
that is closed under subsets: if A ∈ F then B ⊆ A =⇒ B ∈ F .

Definition 1 (Matroid). An independence system (E, F ) is a
matroid if it satisfies the additional property that if X, Y ∈ F such
that |X | > |Y |, then there is an x ∈ X \ Y such that Y ∪ {x} ∈ F .

The uniform matroid is defined by the collection of all subsets
of E with size less then or equal to m ∈ Z+, i.e., F := {A ⊆ E :

|A| ≤ m}. Another example is the partitionmatroid. The base set E is
partitioned into n disjoint sets, {Ei}ni=1. Given k ∈ Zn

+
, the partition

matroid is defined by the collection F := {A ⊆ E : |A ∩ Ei| ≤

ki, ∀i = 1 . . . n}.

2.2. Set functions

Let E be a finite set. A set function f over E assigns a value to
every subset of E, i.e., f : 2E

→ R.

Definition 2 (Normalized andMonotone). The function f is normal-
ized if f (∅) = 0. The function, f , is monotone non-decreasing if for
all A ⊆ B ⊆ E, f (A) ≤ f (B).

Definition 3 (Submodularity). The function f is submodular if for
all A ⊆ B ⊆ E and for all x ∈ E \ B we have f (A ∪ {x}) − f (A) ≥

f (B ∪ {x}) − f (B).

Submodular functions satisfy the property of diminishing
marginal returns. That is, the contribution of any element x to the
total value of a set decreases as the set gets bigger. More formally,
let ∆f (B|A) := f (A ∪ B) − f (A). Then, ∆f (x|A) ≥ ∆f (x|B) for all
A ⊆ B ⊆ E.

2.3. Sequence functions

For our purposes, a sequence A = (a1, . . . , ak), of length k ∈ Z≥0
consists of k elements from a base set of elements E, i.e., ai ∈ E.
Two sequences A = (a1, . . . , ak) and B = (b1, . . . , bℓ) defined
over the same base set can be concatenated into a larger sequence:
A ∥ B = (a1, . . . , ak, b1, . . . , bℓ). A subsequence of A is a sequence
derived from A by deleting some elements but not changing the
order of the remaining elements and is denoted B ⊆ A. A sequence
function f defined over a base set E maps from sequences over E
to real numbers. The value of a sequence function depends on the
order of the elements in the sequence.

Definition 4 (Sequence Monotonicity). The sequence function f is
monotone non-decreasing if for all subsequences A of a sequence
B, i.e., A ⊆ B, f (A) ≤ f (B).

For a sequence function f , we define the marginal reward of
concatenating a sequence C to a sequence A as ∆f (C |A) := f (A ∥

C)−f (A). The subscript f will be omitted unless there is ambiguity.

Definition 5 (Sequence Submodularity). The function f is sequence
submodular if for all A ⊆ B, we have ∆f (C |A) ≥ ∆f (C |B).
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