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a b s t r a c t

We propose an iterative, partition-based moving horizon state estimator for large-scale linear systems
that consist of interacting subsystems. Every subsystem estimates its own state and disturbance variables,
taking into account the estimates received from neighboring subsystems. Compared to other partition-
based moving horizon estimators, the proposed method has two unique features: it can handle coupled
inequality constraints on the estimated variables and its state estimates come arbitrarily close to the
optimal state estimates of a centralized moving horizon estimator. The applicability and performance
of the proposed method are demonstrated on a numerical example and convergence and asymptotic
stability are rigorously proven.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Especially for large-scale systems composed of interconnected
subsystems, partition-based state estimation has been recognized
as a promising alternative to decentralized and centralized ap-
proaches. In partition-based estimation, the state of each subsys-
tem is estimated individually by dedicated subsystem estimators,
which exchange information in order to compensate for their lim-
ited knowledge about the other subsystems and their measure-
ments. In this way, partition-based estimators aim to combine the
intuitive structure of decentralized estimation with the superior
performance of centralized estimation.

In particular, this paper focuses on partition-based moving
horizon estimation (PMHE). Recent approaches are reviewed
in Christofides, Scattolini, Muñoz de la Peña and Liu (2013), in-
cluding most notably a number of non-iterative methods with
guaranteed stability (Farina, Ferrari-Trecate, & Scattolini, 2010).
An iterative alternative method was proposed in Schneider, Scheu,
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and Marquardt (2013). It is called sensitivity-driven, partition-
based moving horizon estimator (S-PMHE), since the sensitivities
of neighboring subsystems are taken into account by the local esti-
mators. S-PMHE has been successfully applied to a nonlinear case
study from chemical engineering (Schneider, Scheu, & Marquardt,
2014). The unique feature of this method is that, iteratively, its
state estimates approach the optimal state estimates of the cor-
responding centralized moving horizon estimator (CMHE) as pro-
posed in Rao, Rawlings, and Lee (2001).

The main contribution of this paper is an extension of S-
PMHE (Schneider et al., 2013) that enables coupled inequality con-
straints on the estimated state and disturbance variables. This
extension adds another unique feature to S-PMHE, as no other
partition-basedmoving horizon estimator is currently able to han-
dle coupled inequality constraints, to the best of our knowledge.
For the novel iterative algorithm, conditions for its asymptotic con-
vergence to the optimal – inequality-constrained – state estimates
of CMHE are derived, and asymptotic stability of the estimation er-
ror is established. As a positive side effect, less conservative con-
vergence conditions are obtained for the unconstrained S-PMHE
algorithm reported in Schneider et al. (2013). Finally, the improved
performance of the inequality-constrained S-PMHE algorithm is
demonstrated on a numerical example.

The remaining part of this paper is organized as follows.
Section 2 recalls constrained CMHE and introduces the system
partitioning. In Section 3, the iterative, partition-based S-PMHE
algorithm is derived. Section 4 presents the main convergence and
stability results. The method is illustrated on a numerical example
in Section 5 before the paper is concluded in Section 6.
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2. Preliminaries

We study a large-scale physical system of the form

x�(k+ 1) = Ax�(k)+ w�(k), x�(0) = x�0, (1a)

y�(k) = Cx�(k)+ v�(k). (1b)

x�(k) ∈ Rn and y�(k) ∈ Rp are the state and output vectors at
time index k, while w�(k) ∈ Rn and v�(k) ∈ Rp represent process
and measurement disturbances, respectively. Finally, x�0 refers to
the initial condition and A ∈ Rn×n and C ∈ Rp×n are the system
and output matrices. The solution of (1) at time k for given x�0 is
denoted as x�(k, x�0, w

�).
In this paper, we make the following assumption:

Assumption 1 (Observability). The pair (A, C) is observable.

In Rao et al. (2001), it is proposed to estimate x�(k′, x�0, w
�) by

solving, in each time step k′, the optimization problem

min
∆x(k0),x,w,v

Φ (2a)

s.t. Φ =
1
2

∆x(k0)
2
P̃(k0) +

1
2


k′−1
k=k0
∥w(k)∥2Q̃ + ∥v(k)∥2R̃


(2b)

x(k0) = x̄(k0)+∆x(k0), (2c)
x(k+ 1) = Ax(k)+ w(k), (2d)

y�(k) = Cx(k)+ v(k), (2e)

where k ∈ {k0, . . . , k′ − 1}. In (2), up to K = k′ − k0 mea-
surement samples y�(k) are processed to obtain the estimates
x = ⟨x(k0), . . . , x(k′)⟩, w = ⟨w(k0), . . . , w(k′ − 1)⟩ and v =
⟨v(k0), . . . , v(k′−1)⟩, where the bracket notation ⟨a1, . . . , am⟩ in-
dicates [aT1 . . . aTm]

T throughout this text. Given an a priori estimate
of the state at the beginning of the horizon x̄(k0) and symmetric
positive definite weighting matrices P̃(k0) ∈ Rn×n, Q̃ ∈ Rn×n

and R̃ ∈ Rp×p, the solution x(k′) is the desired a priori estimate
of x�(k′, x�0, w

�).
Problem (2a)–(2e) is known as the unconstrained centralized

moving horizon estimation problem (CMHE). Sometimes, however,
additional information is available about system (1). For example,
states representing a concentration of some substance in a
chemical reactor are always non-negative. Such information can
naturally be incorporated into (2) through additional constraints
of the form

x(k) ∈ X, w(k) ∈ W, v(k) ∈ V, ∀k, (2f)

where X, W and V are polyhedral and convex sets described by the
inequality constraints

X = {x(k) : Dxx(k)+ dx ≤ 0},
W = {w(k) : Dww(k)+ dw

≤ 0},
V = {v(k) : Dvv(k)+ dv

≤ 0},

and 0 ∈ W, 0 ∈ V. The consideration of such inequality constraints
is a particular strength of MHE and may lead to improved
estimation performance. However, a poor choice of the constraint
sets may prohibit stability of the estimation error. This issue is
complex and has been discussed in great detail in Rao (2000) and
Rao, Rawlings, andMayne (2003). To avoid such complications, we
make the following assumption (Rao et al., 2003).

Assumption 2 (Feasibility). The process and measurement distur-
bances acting on the physical system satisfy w�(k) ∈ W and
v�(k) ∈ V for all k ≥ 0. Furthermore, the disturbances w�(k) and
initial condition x�0 are such that x�(k, x�0, w

�) ∈ X for all k ≥ 0.
In other words, the variables of the physical system are always a
feasible solution to problem (2).

Problem (2a)–(2f) is called constrained CMHE. Assumption 2
guarantees that a feasible solution exists. Hence, it suffices to check
constraint qualifications only for consistent active sets, which
refer to active sets where the corresponding feasible set is non-
empty. Togetherwith Assumption 2, the following assumptionwill
guarantee uniqueness of an optimal solution.

Assumption 3 (QPProperties). Theweights P̃(k0), Q̃ and R̃ are sym-
metric positive definite for all k0 ≥ 0. Furthermore, the constraints
(2c)–(2f) satisfy the linear independence constraint qualifications
(LICQ) for all consistent active sets.

Lemma 4 (Uniqueness). Under Assumptions 2 and 3, constrained
CMHE (2) has a unique minimizer.

Proof. If we introduce the vector u = ⟨∆x(k0), w, v⟩ and define
H , Gij, γi, i = 1, 2, 3, j = 1, 2, accordingly, then problem (2a)-(2f)
can be rewritten as

min
u,x

1
2
uT H u (3a)

s.t. G11 u+ G12 x = γ1, (3b)
G21 u+ G22 x = γ2, (3c)
G31 u+ G32 x ≤ γ3. (3d)

Here, Eqs. (3b), (3c) and (3d) represent the constraints (2c)–(2d),
(2e) and (2f), respectively. In Eq. (3a), the matrix H =

diag(P̃, Q̃ , . . . , Q̃ , R̃, . . . , R̃) inherits its positive-definiteness from
the weighting matrices P̃, Q̃ and R̃ (Assumption 3). In particular,
problem (3) is a convex quadratic program. According to its con-
struction from Eqs. (2c) and (2d), the matrix G12 ∈ R(Kn)×(Kn) in Eq.
(3b) is regular, so that x ∈ RKn can formally be eliminated from Eq.
(3b). After this elimination we obtain an equivalent strictly convex
quadratic program that has, because we assume the existence of a
feasible point (Assumption 2), a unique solution. �

Often, large-scale systems are composed of interacting subsys-
tems. Examples for such subsystems are the process units in a
chemical process system or in a hydro power plant. Especially,
if these interacting subsystems are geographically separated, it is
worthwhile to consider alternatives to centralized state estimation
approaches. One such alternative is so-called partition-based state
estimation, where the state of each subsystem is interpreted as a
partition of the state vector of the overall large-scale system. In for-
mal terms, we assume that the large-scale system (1) consists of N
interacting subsystems i ∈ N = {1, . . . ,N}. Using the bracket
notation introduced earlier, all vectors are partitioned analogously
to the state vector as x(k) = ⟨x1(k), . . . , xN(k)⟩. Similarly, the
matrices have the decompositions A = [Aij]i,j∈N , C = [Cij]i,j∈N ,
P̃ = [P̃ij]i,j∈N , Q̃ = [Q̃ij]i,j∈N and R̃ = [R̃ij]i,j∈N where the subma-
trices have the dimensions Aij ∈ Rni×nj , Cij ∈ Rpi×nj , P̃ij ∈ Rni×nj ,
Q̃ij ∈ Rni×nj and R̃ij ∈ Rpi×pj . This partitions the equality constraints
(2c)–(2e) depending on which subsystem each state or measure-
ment on the left hand side of these equations physically belongs
to. The inequality constraints (2f) may also contain variables of dif-
ferent subsystems, however, their assignment to a particular sub-
system is a design choice. Without loss of generality, we assume in
the following that the row order of thematrices and vectorsDx,Dw ,
Dv , dx, dw , and dv already reflects a particular design choice, in the
sense that their corresponding (i, j)-blocks completely describe all
inequalities that have been assigned to subsystem i. For systems
partitioned in this way, a state estimation algorithm is presented
next.
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