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a b s t r a c t

This paper addresses the problem of achieving monotonic tracking control for any initial condition (also
referred to as global monotonic tracking control). This property is shown to be equivalent to global non-
overshooting as well as to global non-undershooting (i.e., non-overshooting and non-undershooting for
any initial condition, respectively). Themain objective of this paper is to prove that a stable system is glob-
ally monotonic if and only if all the rows of the output matrix are left eigenvectors of the space transition
matrix. This property allows one to formulate the design of a controller which ensures global monotonic
tracking as a convex optimization problem described by a set of Linear Matrix Inequalities (LMIs).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Within the context of tracking control, overshoot and under-
shoot are typically considered to be undesirable features of the
response. Even more, in the vast majority of tracking problems,
ideally the response monotonically tracks the target. In some sit-
uations (e.g. automatic cutting machines, plotters, positioning of a
CD disk read/write head to name a few), overshoot and undershoot
inevitably lead to an unacceptable performance.

The problem of ensuring that a linear time invariant plant has a
non-overshooting and/or a non-undershooting step response has a
very long history. Much of the existing literature deals with single
input single output (SISO) systems. Papers offering designmethods
to avoid overshoot or undershoot include (Bement & Jayasuriya,
2004a,b; Darbha, 2003; Darbha & Bhattacharyya, 2002, 2003; Leon
de la Barra, 1994). All of thesemethods assume that the initial state
of the system is at rest, and in some cases (Darbha, 2003; Darbha
& Bhattacharyya, 2002), the methods avoid overshoot at the cost
of greatly slowing the speed of the response, leading to a lengthy
settling time. Some seminal results have been recently obtained for
non-linear systems using back-stepping techniques in Krstic and
Bement (2006).

In contrast to the aforementioned contributions, in Schmid and
Ntogramatzidis (2010) a design method is offered for avoiding
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overshoot for linear systems with multiple inputs and outputs
(MIMO), from non-zero initial conditions. In Schmid and Ntogra-
matzidis (2010) it is shown that forMIMO systems one can achieve
arbitrarily fast settling time while also guaranteeing a monotonic
response in all components of the output vector for any initial con-
dition. In Schmid and Ntogramatzidis (2012), this technique is ex-
tended to the avoidance of undershoot as an additional feature of
the control action. In Ntogramatzidis, Trégouët, Schmid, and Fer-
rante (2014), a geometric approach is used to identify a neces-
sary and sufficient structural condition, solely dependent upon the
structure of the system, which ensures global monotonic tracking.

The main result of this paper is to offer a characterization
of monotonicity in terms of the left eigenvectors of the state
transition matrix. This characterization allows one to formulate
the design problem as a computationally tractable necessary
and sufficient LMI condition. Interestingly, the form of this LMI
condition is compatible with the LMIs of the state feedback
multi-objective control framework (Boyd, El, Ghaoui, Feron, &
Balakrishnan, 1994; Chilali & Gahinet, 1996), thus enabling to add
constraints on the positions of the eigenvalues and/or to bound and
optimize some H2–H∞ performance indices.

Even if the continuous-time case is considered throughout
the paper, the method presented herein can be straightforwardly
adapted to the discrete-time casewith onlyminor differences, that
will be pointed out.

2. Problem formulation

Consider the linear time-invariant (LTI) system

Σ :


ẋ(t) = A x(t) + B u(t), x(0) = x0,
y(t) = C x(t), (1)
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where, for all t ≥ 0, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, y(t) ∈ Rp is the output, and A, B and C are appropriate di-
mensional constant matrices. We will denote with Ci the ith row
vector of the output matrix C . This paper is concerned with the
problem of monotonically tracking any given constant reference
target r ∈ Rp from any initial condition x0 ∈ Rn. The following
standing assumption ensures that the tracking of a constant refer-
ence is achievable for any initial condition (He, Chen, &Wu, 2005):

Assumption 2.1. SystemΣ is right invertible and stabilizable, and
Σ has no invariant zeros at the origin.

As shown in Franklin, Powell, and Emami-Naeini (1994), Schmid
and Ntogramatzidis (2010), Assumption 2.1 guarantees the exis-
tence of xss ∈ Rn and uss ∈ Rm satisfying
0 = A xss + B uss
r = C xss

(2)

for any step reference r ∈ Rp. By using the control law1

u(t) = F

x(t) − xss


+ uss (3)

and the change of variable ξ
def
= x − xss, the following closed-loop

autonomous system is obtained:

Σaut :


ξ̇ (t) = (A + B F) ξ(t), ξ(0) = ξ0

def
= x0 − xss,

y(t) = C ξ(t) + r.
(4)

If A+B F is asymptotically stable, x converges to xss, ξ converges to
zero and y converges to r as t goes to infinity. Let the tracking error
vector be defined as ϵ(t) def

= y(t)−r , and let us rewrite system (4) as

Σaut,ϵ :


ξ̇ (t) = (A + B F) ξ(t), ξ(0) = ξ0,
ϵ(t) = C ξ(t). (5)

We recall that overshoot occurs whenever an output exceeds the
target. More precisely, yk, or the corresponding error component
ϵk, is said to overshoot if ϵk(t̃) crosses the time axis for some t̃ ≥ 0,
i.e., if and only if there exists t̃ ≥ 0 such that ϵk(t̃) = 0 and
ϵ̇k(t̃) ≠ 0. We also recall that undershoot means that the output
moves further away from the target than its initial distance. Hence,
an error component ϵk is said to undershoot if and only if there ex-
ists t̃ ≥ 0 such that sgn ϵk(t̃) = sgn ϵk(0) and |ϵk(t̃)| > |ϵk(0)|.
Finally, ϵk is monotonic if and only if ϵ̇k never changes sign.

This paper focuses on the design of a state-feedback matrix F
for (4) such that, for all initial conditions, (i) ϵ(t) → 0 for t → ∞;
and (ii) ϵk(t) is monotonic for any ξ0 ∈ Rn for all k ∈ {1, . . . , p}.
We shall describe this property as global monotonicity. In a sim-
ilar way, we talk about global non-overshooting and global non-
undershooting if non-overshooting and non-undershooting can be
achieved in all components of the output for all initial condi-
tions, respectively. It is obvious that monotonicity implies non-
overshooting and non-undershooting but not vice versa. However,
we will prove that, for LTI systems, global monotonicity, global non-
overshooting and global non-undershooting are all equivalent con-
cepts.

It is well known that the kth component of the error ϵk(t) in (5)
can be written as

ϵk(t) =

ρ
i=1

mi
j=1

α̃k,i t j−1eλit +

c
i=1

m̃i
j=1


α̂′

k,i t
j−1 eσit cos(ωi t)

+ α̂′′

k,i t
j−1 eσit sin(ωi t)


, (6)

1 It is easily established that, for every reference r , (3) is equivalent to u(t) =

F x(t) + G r where G = −


C (A + B F)−1 B

Ď
, and where Ď denotes the

Moore–Penrose pseudo inverse.

where λ1, . . . , λρ are the real eigenvalues observable from ϵk,
with associated algebraic multiplicities m1, . . . ,mρ and where
µ1, . . . , µc, µ1, . . . , µc are the complex eigenvalues observable
from ϵk and the algebraicmultiplicities associatedwithµ1, . . . , µc
are m̃1, . . . , m̃c , respectively, where σi = Re{µi} andωi = Im{µi}.
It is easily established that α̃k,i, α̂

′

k,i, α̂
′′

k,i are functions of the initial
conditions.

Remark 2.1. As proved e.g. in Ntogramatzidis et al. (2014), the
real coefficients α̃k,i, α̂′

k,i and α̂′′

k,i in (6) can be made arbitrary by
choosing suitable initial conditions. Therefore, if the mode t jeλit

appears in ϵk for a certain j ≥ 1, for some initial conditions all the
modes t leλit with 0 ≤ l ≤ j − 1 will also appear in ϵk. Similarly, if
themode t j−1 eσit cos(ωi t) appears in ϵk, for some initial condition
the mode t j−1 eσit sin(ωi t) will appear in ϵk as well, and vice versa.

If the kth component of the response is monotonic from any initial
condition, only components of the form eλi t for real λi can appear
in each ϵk. Indeed, for any real λi < 0, the function t j−1 eλi t is
monotonic only if j = 1, and the functions t j−1eσi t cos(ωi t) and
t j−1eσi t sin(ωi t) are monotonic only if j = 1 and ωi = 0. Thus, the
remaining case is ϵk(t) =

ρ

i=1 α̃k,ieλi t , where the real coefficients
α̃k,i can be made arbitrary by choosing suitable initial conditions.
From Lemma A.1 of Schmid and Ntogramatzidis (2010), it follows
that if ϵk(t) is a linear combination of two or more negative
real exponential functions, it will change sign (and hence not be
monotonic) for some coefficients α̃k,i. Thus, for each k ∈ {1, . . . , p}
we must have ϵk(t) = α̃k,ieλi t for some eigenvalue λi and some

real coefficient αk
def
= α̃k,i. In conclusion, global monotonicity can

be obtained if and only if

ϵ(t) =

α1 eλ1 t

...

αp eλp t

 (7)

where λ1, . . . , λp are real and negative (up to a re-indexing of the
closed-loop eigenvalues). Accordingly, we can define the problem
tackled in this paper as follows.

Problem 2.1. Let λ1, . . . , λp ∈ R−. Find a matrix F such that
applying (3) to Σ yields an asymptotically stable closed-loop
system Σaut,ϵ for which, from all initial conditions and for all step
references, the tracking error is as in (7).

Interestingly, the next result shows that – as already anticipated
– global monotonicity, global non-overshooting and global non-
undershooting are all equivalent concepts.

Theorem 2.1. Let u be given by (3). The following statements are
equivalent:

(1) Σaut is globally monotonic;
(2) Σaut is globally non-overshooting;
(3) Σaut is globally non-undershooting.

Proof. Since a monotonic response is non-overshooting and non-
undershooting, it is obvious that (1) implies (2) and (3). Let us
prove that (2) or (3) implies (1). We show in particular that if Σaut
is not globally monotonic, it cannot be globally non-overshooting
nor non-undershooting. If Σaut is not globally monotonic, at least
one component of the tracking error ϵk contains (i) a mode th eλ t

for some h ∈ N; or (ii) a mode th eσit cos(ωi t) for some h ∈ N;
(iii) a mode th eσit sin(ωi t) for some h ∈ N; or (iv) the sum of two
or more modes. In view of Remark 2.1, we can choose an arbitrary
one of the modes appearing in (6) and select the initial condition
in such a way that ϵk(t) coincides exactly with that mode. Thus,
it suffices to show that the error components ϵk(t) = α th eλ t ,
ϵk(t) = α th eσit cos(ωi t), ϵk(t) = α th eσit sin(ωi t) and ϵk(t) =
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