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a b s t r a c t

The performance of fast forward–backward splitting, or equivalently fast proximal gradient methods,
depends on the conditioning of the optimization problem data. This conditioning is related to a metric
that is defined by the space on which the optimization problem is stated; selecting a space on which
the optimization data is better conditioned improves the performance of the algorithm. In this paper, we
propose severalmethods,with different computational complexity, to find a space onwhich the algorithm
performs well. We evaluate the proposed metric selection procedures by comparing the performance
to the case when the Euclidean space is used. For the most ill-conditioned problem we consider, the
computational complexity is improved by two to three orders of magnitude. We also report comparable
to superior performance compared to state-of-the-art optimization software.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fast gradient methods have been around since the early 1980s
when the seminal paper Nesterov (1983) was published. The al-
gorithm in Nesterov (1983) is applicable to unconstrained smooth
optimization problems and has since been extended and gener-
alized in various directions. In Nesterov (2003), new acceleration
schemes were presented as well as fast gradient methods for con-
strained optimization. In Nesterov (2005), smoothing techniques
for nonsmooth problems are presented. Fast proximal gradient
methods, or equivalently fast forward–backward splitting meth-
ods, that solve composite convex optimization problems of the
form

minimize f (x) + g(x) (1)

where f is required to be smooth, are proposed in Beck and
Teboulle (2009) and Nesterov (2013). In Tseng (2008), general-
izations and unifications of many fast forward–backward splitting
methods are presented.

The smooth part of the composite objective function, f in (1),
is in fast forward–backward splitting approximated by the r.h.s.

✩ Thematerial in this paperwas partially presented at the 19thWorld Congress of
the International Federation of Automatic Control, August 24–29, 2014, Cape Town,
South Africa and the 53rd Conference on Decision and Control, December 15–17,
2014, Los Angeles, CA, USA. This paper was recommended for publication in revised
form by Associate Editor Lalo Magni under the direction of Editor Ian R. Petersen.
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of

f (x) ≤ f (y) + ⟨∇f (y), x − y⟩ +
β

2 ∥x − y∥2 (2)

where the normand inner-product are given by the space onwhich
the problem is defined. The condition that (2) holds for all x and y is
referred to as f being β-smooth. Since the r.h.s. of the smoothness
condition (2) is the only information the algorithm has about the
smooth function, the smaller the gap in (2) (i.e. the better the
r.h.s. of (2) approximates f ), the better the performance of the
algorithm is likely to be. In this paper, we show how to select a
space (or metric, we will use these notions interchangeably since
the metric defines the space) on which the fast forward–backward
splitting method performs well, when solving the dual of strongly
convex composite optimization problems. The spaces we consider
are Euclidean spaces with inner product ⟨x, y⟩ = xTy and scaled
norm ∥x∥K =

√
xTKx, where K is a positive definite metric matrix.

We show how to select themetric K such that the gap in (2) for the
smooth part of the dual problem is minimized. Using this metric in
the algorithm often leads to improved performance compared to
using the Euclidean metric with K = I .

Recently, Patrinos and Bemporad (2014); Richter, Jones, and
Morari (2013) proposed to use fast dual forward–backward split-
ting for embedded model predictive control. They apply fast for-
ward–backward splitting with the standard Euclidean metric on
two different dual problems. We show how these algorithms can
be improved by choosing a metric that reduces the gap in (2). The
performance improvement is confirmed by applying the methods
to a pitch control problem in an AFTI-16 aircraft. This benchmark
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has previously been studied in Bemporad, Casavola, and Mosca
(1997) and Kapasouris, Athans, and Stein (1990) and is a challeng-
ing problem for first ordermethods since it is fairly ill-conditioned.
We report computation time improvements by two to three orders
of magnitude. Besides this, we also compare the performance to
the ADMM-based (see Boyd, Parikh, Chu, Peleato, & Eckstein, 2011
for more on ADMM—the alternating direction method of multipli-
ers) algorithm in Jerez et al. (2014) and O’Donoghue, Stathopou-
los, and Boyd (2013). We also compare our algorithms, that are
implemented in the MATLAB toolbox QPgen Giselsson (2014a),
to several other toolboxes and software for embedded optimiza-
tion, namely: DuQuad, see Necoara and Patrascu (2015), FiOrdOs,
see Ullmann and Richter (2012), FORCES, see Domahidi, Zgraggen,
Zeilinger, Morari, and Jones (2012), CVXGEN, see Mattingley and
Boyd (2012), qpOASES, see Ferreau, Bock, and Diehl (2008) and
the MPT Toolbox, see Herceg, Kvasnica, Jones, and Morari (2013).
Finally, we also compare to the general commercial QP-solver
MOSEK, see Mosek (2013). QPgen, with the proposed fast dual for-
ward–backward splitting method, performs little to much better
than the other methods on this example.

Fast dual forward–backward splitting can also be used for
distributed optimization when the objective to be minimized is
separable. In the context of gradientmethods, this has been known
since Benders (1962), Danzig andWolfe (1961) and Everett (1963).
Recently such approaches have been proposed for distributed
model predictive control (DMPC) (Doan, Keviczky, & De Schutter,
2011; Giselsson, 2013; Giselsson, Doan, Keviczky, De Schutter,
& Rantzer, 2013; Negenborn, 2007), and resource optimization
over networks (Beck, Nedic, Ozdaglar, & Teboulle, 2014; Ghadimi,
Shames, & Johansson, 2013; Necoara & Nedelcu, 2015). Often,
centralized coordination is needed when selecting the step-size
for the gradient-step. This is relaxed in Beck et al. (2014), where
the authors noted that the smooth part of the dual problem
consists of a sum of local functions. Each of these can compute
its own step-size, share with its neighbors and sum, to get a fully
distributed step-size selection. This procedure can be augmented
by the results of this paper to select local metrics instead of step-
sizes. This leads to more efficient algorithms which is confirmed
by a numerical example which shows improvements of about one
order of magnitude. We also compare the performance to the dual
Newton conjugate gradient method in Kozma, Klintberg, Gros, and
Diehl (2014), which is outperformed in our numerical example.

This paper unifies and extends the conference publications
Giselsson (2014b,c) and Giselsson and Boyd (2014).

2. Notation and preliminaries

We denote by R, Rn, Rm×n, the sets of real numbers, column
vectors, and matrices. We use notation (x, y, z) := [xT yT zT ]T for
stacked real column vectors. We also use notation R̄ = R ∪ {∞}

for the extended real line. Sn
⊆ Rn×n is the set of symmetric

matrices, and Sn
++

⊆ Sn, [Sn
+
] ⊆ Sn, are the sets of positive [semi]

definite matrices. We use Euclidean spaces with the standard
inner product ⟨x, y⟩ = xTy and different norms. When using the
induced norm ∥x∥ =

√
⟨x, x⟩, we get the standard Euclidean

space. We also consider spaces EH with Euclidean inner product
and scaled norm ∥x∥H =

√
⟨x,Hx⟩, where H ∈ Sn

++
. The dual

space to EH is denoted by E∗

H . The dual norm to ∥y∥H is ∥y∥∗

H =

maxx {⟨y, x⟩2 : ∥x∥H = 1} = ∥y∥H−1 , i.e., E∗

H = EH−1 . Further,
the class of closed, proper, and convex functions f : EH → R̄
is denoted by Γ0(EH). The conjugate function f ∗

: E∗

H → R̄ to
f ∈ Γ0(EH) is defined as f ∗(y) = supx {⟨y, x⟩ − f (x)}. The adjoint
operator to a bounded linear operator A : EH → EK is denoted by
A∗

: E∗

K → E∗

H and is defined as the unique operator that satisfies
⟨Ax, y⟩ = ⟨A∗y, x⟩ for all x ∈ EH and y ∈ E∗

K . Since the ambient
space for EH is the standard Euclidean space, we often denote the

matrix that corresponds to the operator A : EH → EK by A ∈

Rm×n. We use notation IX for the indicator function for the set X,
and Ig(x)≤0 for the indicator function for the setX = {x | g(x) ≤ 0}.

A function f ∈ Γ0(EH) is β-strongly convex (w.r.t. EH ) if f −
β

2 ∥ · ∥
2
H is convex. A function f ∈ Γ0(EH) is β-smooth (w.r.t. EH )

if it is differentiable and β

2 ∥ · ∥
2
H − f is convex. An equivalent

characterization of β-smoothness w.r.t. EH is that

f (x) ≤ f (y) + ⟨∇f (y), x − y⟩ +
β

2 ∥x − y∥2
H (3)

holds for all x, y ∈ EH . As seen in the following proposition, these
notions are related through the conjugate function.

Proposition 1. Suppose that f ∈ Γ0(EH). Then the following are
equivalent:

(i) f is β-strongly convex (w.r.t. EH ).
(ii) f ∗ is 1

β
-smooth (w.r.t. E∗

H = EH−1 ).

A proof to this can be found, e.g., in Zalinescu (2002, Proposition
3.5.3).

3. Problem formulation

We consider optimization problems of the form

minimize f (x) + g(y)
subject to Ax = y (4)

and assume that the following assumption holds throughout the
paper:

Assumption 2. (a) The extended valued function f ∈ Γ0(EH) is
1-strongly convex (w.r.t. EH ).

(b) The extended valued function g ∈ Γ0(EK ).
(c) A : EH → EK is a bounded linear operator.

Remark 3. A function that satisfies Assumption 2(a) is f (x) =
1
2x

THx + f̂ where H ∈ Sn
++

and f̂ ∈ Γ0(EH). Since f̂ (and g) are
allowed to be extended valued, they can, e.g., be indicator functions
for nonempty, closed, and convex constraint sets. Further, the
operator A : EH → EK has an associated matrix A : Rn

→ Rm

that satisfies Ax = Ax for all x ∈ Rn.

To arrive at the dual problem, we introduce Lagrange multipli-
ers µ ∈ EK−1 , to get Lagrangian

L(x, y, µ) = f (x) + g(y) + ⟨Ax − y, µ⟩.

By minimizing the Lagrangian over x, and y, we get

inf
x,y

L(x, y, µ) = inf
x


⟨A∗µ, x⟩ + f (x)


+ inf

y
{⟨−y, µ⟩ + g(y)}

= − sup
x


⟨−A∗µ, x⟩ − f (x)


− sup

y
{⟨µ, y⟩ − g(y)}

= −f ∗(−A∗µ) − g∗(µ).

Negating this, we get the negated dual problem to (4) (see, e.g.,
Rockafellar, 1970, §31 for more details):

minimize d(µ) + g∗(µ) (5)

where

d(µ) := f ∗(−A∗µ). (6)

Note that d, g∗
∈ Γ0(EK−1). The efficiency of solving this dual prob-

lem using fast forward–backward splitting is highly dependent on
which metric that is used. This paper is about choosing metrics to
make the algorithm perform well.
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