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a b s t r a c t

In this paper we consider the identification of a linear module that is embedded in a dynamic network
using noisy measurements of the internal variables of the network. This is an extension of the errors-in-
variables (EIV) identification framework to the case of dynamic networks. The consequence of measuring
the variables with sensor noise is that some prediction error identification methods no longer result in
consistent estimates. The method developed in this paper is based on a combination of the instrumental
variable philosophy and closed-loop prediction error identification methods, and leads to consistent
estimates of modules in a dynamic network. We consider a flexible choice of which internal variables
need to bemeasured in order to identify themodule of interest. This allows for a flexible sensor placement
scheme. We also present a method that can be used to validate the identified model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many systems in engineering can be modeled as dynamic
networks, as e.g. power systems, telecommunication systems,
and distributed control systems. Models of these networks are
important either for prediction, simulation, controller design or
fault detection. Since sensors are becoming more ubiquitous and
cheaper the result is that data can be collected frommany variables
in a dynamic network, and a system identification approach for
modeling particular modules in the dynamic network, becomes
attractive. Using this approach it is important to be mindful of the
fact that every measurement is contaminated with sensor noise.

The literature on dynamic network identification can be split
into two categories based on whether the interconnection struc-
ture of the network is known or not. In the case that the inter-
connection structure is not known, the network structure together
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with the dynamics typically needs to be estimated. The majority
of the papers in this category are based on the concept of Granger
Causality (Granger, 1980). In Caines and Chan (1975) and Gevers
and Anderson (1981) it is shown that it is possible to distinguish
between open and closed-loop data generating systems. The rea-
soning is extended to more complex interconnection structures
using a non-parametric approach (Materassi & Innocenti, 2010;
Materassi & Salapaka, 2012); using a Bayesian approach (Chuiso &
Pillonetto, 2012); and using a parametric approach supplemented
by ℓ0 regularization (Seneviratne & Solo, 2012; Yuan, Stan, War-
nick, & Goncalves, 2011), ℓ1 regularization (Friedman, Hastie, &
Tibshirani, 2010), and compressed sensing (Sanandaji, Vincent, &
Wakin, 2012). In these papers it is assumed that each node in the
network is driven by an unknown, independent stochastic process,
each variable is measuredwithout sensor noise, and every variable
in the network ismeasured. It is shown that under these conditions
topology detection is possible.

For many networks in engineering, the interconnection struc-
ture is known. This knowledge can be incorporated in the iden-
tification problem. A type of interconnection structure that results
from the discretization of partial differential equations is a spatially
distributed system where each node is connected only to its direct
neighbors. Methods for identifying such systems are presented in
Ali, Popov,Werner, and Abbas (2011), Haber and Verhaegen (2012)
and Massioni and Verhaegen (2008), where common assumptions
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are that each subsystem is identical, known external excitation sig-
nals are present at each node, and no process noise is present in
the networks. Because such networks are typically very large, em-
phasis is on improving computational speed of the identification
algorithms.

Identification in networks with a general interconnection
structure have been investigated in Dankers, Van den Hof,
Heuberger, and Bombois (in press) and Van den Hof, Dankers,
Heuberger, and Bombois (2013), where methods are presented
to consistently identify a single transfer function embedded in a
dynamic network. It is shown that by knowing the interconnection
structure assumptions on the correlation of process noise can be
relaxed, and that there is considerable flexibility inwhich variables
need to be measured. In these papers the measurements are
assumed to be sensor noise free.

Variance issues of identified models in a structured network
have been addressed in Everitt, Hjalmarsson, and Rojas (2013,
2014), Gunes, Dankers, and Van den Hof (2014) and Wahlberg,
Hjalmarsson, and Mårtensson (2009) where it is shown that
‘‘extra’’ measurements can be used to reduce the variance of the
estimated transfer function. These papers assume that there is no
process noise, and known external excitation and sensor noise are
both present.

In this paper we consider a very general framework that covers
all the cases discussed in the previous literature review, where
there may or may not be known external excitation present, there
is both (correlated) process noise and (correlated) sensor noise
present, the modules making up the network are not identical,
and not all internal variables of the network are measurable.
Moreover, we do not make assumptions on the whiteness of the
sensor noise. The main assumption that we make is that the
interconnection structure of the network is known. We address
the following question: under what conditions is it possible to
consistently identify a particular module embedded in a dynamic
networkwhen only noisymeasurements of a subset of the internal
variables of the network are available? This is an extension of
the so-called Errors-in-Variables (EIV) framework to the case of
dynamic networks.

In the system identification literature, the open loop EIV
problem has been extensively studied, see e.g. Söderström (2007,
2012). The main conclusion in these papers is that either prior
knowledge about the system or a controlled experimental setup
is required to ensure consistent estimates. This latter condition
concerns either periodic excitation (Pintelon & Schoukens, 2012;
Schoukens, Pintelon, Vandersteen, & Guillaume, 1997; Söderström
&Hong, 2005) or repeated experiments Schoukens et al. (1997) and
Pintelon and Schoukens (2012). The closed-loop EIV problem has
been studied in Pintelon and Schoukens (2012) and Söderström,
Wang, Pintelon, and Schoukens (2013) where it is shown that
the plant is identifiable if a noise-free and sufficiently exciting
reference signal is available.

In the extension of this problem to the dynamic network
case fruitful use can be made of additionally measured signals
in the network that can serve as instrumental variables, thereby
enabling a considerable simplification of the EIV problem. The
method presented in this paper is based on instrumental variable
(IV) reasoning. The IV method was developed in the econometrics
field (Wright, 1928), where the method has been applied to static
networks (structural equationmodels in statistics) (Angrist, Imbens,
& Rubin, 1996). In the econometrics literature IV methods are
recognized to have three main advantages when aiming to obtain
consistent estimates:
(1). Presence of sensor noise on the input (explanatory variable in
economics) is no problem (Durbin, 1954);
(2). Confounding variables (omitted variables in econometrics),
i.e. unknown or unmeasured variables for which there is a path to

both the output and an input, are no problem (Angrist & Krueger,
2001; Becker, 2010);
(3). Presence of algebraic loops in the data generating system
(simultaneity in econometrics) is no problem (Becker, 2010).

In this paper we show that the same advantages can be
converted to the situation of a dynamic network, and moreover
that the choice of candidate instrumental variable signals actually
can be widened.

In the system identification literature IV methods are also ex-
tensively used for identification in open-loop (Söderström & Sto-
ica, 1983; Wong & Polak, 1967), and closed-loop systems (Gilson
& Van den Hof, 2005; Söderström & Stoica, 1989; Söderström, Sto-
ica, & Trulsson, 1988). Again, IV methods have been recognized to
be robust to the presence of (particular) sensor noise on the input
(Söderström & Hong, 2005; Thil & Gilson, 2011).

In this paperwe generalize the IVmethod such that it is possible
to obtain consistent estimates of a transfer function embedded
in a dynamic network where all predictor inputs are measured
with (colored) sensor noise, and the instrumental signal(s) are
contaminated too.

In Section 2 background material on dynamic networks,
prediction error identification and IV methods is presented. In
Sections 3 and 4 themain result is presented for two different cases
of IV signals. In Section 5 results are generalized for a flexible choice
of predictor inputs, while in Section 6 a practical implementation
of the method is proposed. In Section 7 a method is presented to
validate the obtained model.1

2. Background

2.1. Dynamic networks

The specific identification framework considered in this paper
is based on Van denHof et al. (2013). A dynamic network is built up
of L elements, related to L scalar internal variables wj, j = 1, . . . , L.
Each internal variable is defined by:

wj(t) =


k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (1)

where G0
jk, k ∈ Nj is a proper rational transfer function, q−1 is the

delay operator, i.e. q−1wj(t) = wj(t − 1) and,

• Nj is the set of indices of internal variables that are direct inputs
to the transfer functions determining wj, i.e. k ∈ Nj iff G0

jk ≠ 0;
• vj is process noise, that is modeled as a realization of a stationary

stochastic process with rational spectral density: vj = H0
j (q)ej

where ej is a white noise process, and H0
j is a monic, stable,

minimum phase transfer function;
• rj is an external variable that is known to the user, and may be

manipulated by the user.

It may be that the noise and/or external variables are not present
at some nodes. The network is defined by:
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where G0
jk is non-zero if and only if k ∈ Nj for row j, and vk (or rk)

is zero if it is not present. Using an obvious notation this results in

1 This paper is based, in part, on the preliminary results of Dankers, Van den Hof,
Bombois, and Heuberger (2014).
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