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a b s t r a c t

This paper develops tools to verify stability and robustness of cascadednonlinear stochastic systems based
on Lyapunov functions. Constituent systems are formulated in terms of integral input-to-state stability
(iISS) and input-to-state stability (ISS) which are popular notions for both stochastic and deterministic
systems. This paper highlights differences between the stochastic and the deterministic cases. In contrast
to deterministic systems, it is demonstrated that assuming ISS systems having unbounded decay rates in
dissipation inequalities is restrictive. Taking this fact into account, stability criteria are formulatedwithout
assuming unboundedness of decay rates, so that ISS systems with bounded decay rates and iISS systems
which are not ISS are covered in a unified manner. Stability criteria for stochastic cascades involve the
growth rate conditions at connecting channels. This paper clarifies how noise diffusion fields affect the
growth rate conditions and the influence depends on definition of stochastic robustness.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic differential equations of Itô form are useful for mod-
eling fluctuation and uncertainty arising in dynamical systems.
Control systems are integration of dynamical modules. Combin-
ing properties of modules together is typically the most efficient
way to understand and synthesize large systems. Therefore, it is
undoubtedly important to study the influence of fluctuation and
uncertainty on system interconnection in the framework of
stochastic differential equations. Notions of integral input-to-state
stability (iISS) and input-to-state stability (ISS)2 provide one of
popular frameworks for studying stability and robustness of inter-
connections of deterministic systems. Feedback interconnections
were tackled in such a framework for stochastic nonlinear systems
(Ito & Nishimura, in press-a; Wu, Karimi, & Shi, 2013; Wu, Xie, &
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Zhang, 2007; Yu & Xie, 2010; Yu, Xie, & Duan, 2010). Importantly,
for deterministic systems, it is known that comparedwith feedback
interconnections, stability and robustness of cascaded systems can
be established under milder conditions (Arcak, Angeli, & Sontag,
2002; Chaillet & Angelli, 2008; Ito, 2010; Panteley & Loría, 1998,
2001; Sontag & Teel, 1995). For instance, a cascade connection of
ISS systems is always ISS. A cascade of an iISS driven system and an
ISS driving system is iISS whenever the connecting channel fulfills
a growth rate condition. One of the aims of this paper is to inves-
tigate whether there are similar facts for stochastic systems. This
paper also aims at demonstrating fundamental distinctions from
deterministic cases.

Lyapunov-type methods have been extensively studied in the
literature of control of stochastic nonlinear systems, e.g. Ferreira,
Arcak, and Sontag (2012), Khasminskii (2012), Krstić and Deng
(1998), Liu, Zhang, and Jiang (2008), Spiliotis and Tsinias (2003),
Tang andBasar (2001), Tsinias (1998),Wuet al. (2007), Xie andTian
(2009), Yu and Xie (2010) and Yu et al. (2010) to name a few. It is
widely known that replacing the derivative of a Lyapunov function
along trajectories of a deterministic systemby an infinitesimal gen-
erator involving a Hessian term is the technical key to dealing with
stochastic systems. In particular, a stability criterion for cascaded
systems was proposed in Liu et al. (2008) when subsystems are ISS
in probability (Tang&Basar, 2001). Although cascaded systemshad
no feedback loop, the criterion was referred to a small-gain condi-
tion. This terminology might not be intuitive, but the result nicely
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described how the Hessian term bothers one in dealing with in-
terconnected systems. Its idea of coping with the Hessian sharply
contrasts to the approach employed in Wu et al. (2013) assuming
concavity of system gains to get rid of the Hessian term.

It is known that deterministic ISS systems always admit radially
unbounded decay rates in their dissipation inequalities for appro-
priately chosen Lyapunov functions (Sontag &Wang, 1995). Based
on this fact, following the seminal work for deterministic systems
(Sontag & Teel, 1995), cascades of stochastic ISS systems are for-
mulated in Liu et al. (2008) with radially unbounded decay rates.
However, for a stochastic cascade, it has not been known whether
it is reasonable to assume the unboundedness of decay rates. This
paper gives a characterization demonstrating that the unbounded-
ness is demanding for stochastic systems even if ISS is assumed.

Bounded decay rates have sometimes been addressed in
preceding studies such as Yu and Xie (2010) and Yu et al. (2010).
However, those studies cope with the Hessian only if decay rates
are unbounded. Indeed, the typical idea to tackle bounded decay
rates or non ISS systems is as simple as checking if summing
up (i.e., linear combination) Lyapunov functions of individual
subsystems establishes stability of interconnected systems. The
linear restrictionmerely renders the coefficient of the troublesome
Hessian term identically zero. For deterministic systems, it is
known that the effectiveness of linear combination is very limited,
and the linear combination results in stability criteria which are
far more conservative than those utilizing nonlinear combination
(Ito, 2006; Ito & Jiang, 2009; Jiang, Mareels, & Wang, 1996;
Praly, Carnevale, & Astolfi, 2010). In fact, no linear combination
can explain the fact that cascade of ISS is always ISS. No linear
combination can explain the aforementioned fact on an iISS system
driven by an ISS system either. This paper provides a way to
effectively use nonlinear combination of Lyapunov functions for
stochastic systems to obtain less conservative criteria for cascades.
This is done in an iISS framework for stochastic systems where
decay rates are allowed to be merely positive definite. Preliminary
results of the material in this paper were reported in Ito and
Nishimura (2014) without any proofs. In addition to providing
proofs and improving examples, this paper strengthens some
results and extends iISS/ISS to practical iISS/ISS which not only
admit biases, but also allow diffusion fields of stochastic noises to
be non-vanishing at the origin. Proofs are presented in appendices.
Some of them are omitted due to space limitation.

Notation: Let R = (−∞, ∞) and R+ = [0, ∞). For a given vec-
tor x of the n-dimensional real vector spaceRn, the Euclidean norm
is denoted by |x|. For a matrix X , |X |F denotes the Frobenius norm
defined by |X |F =


Tr{XTX}, where the superscript T indicates

the transpose of amatrix, and Tr is the trace of a squarematrix. The
symbol Id denotes the identity function on R+. A continuous func-
tion ζ : R+ → R+ is said to be of class P and one writes ζ ∈ P if
ζ (s) > 0 for all s ∈ R+ \ {0}, and ζ (0) = 0. A continuous function
ζ : R+ → R+ is said to be of classK if it is of classP and strictly in-
creasing. It is of class K∞ if, in addition, lims→∞ ζ (s) = ∞. A con-
tinuous function η : R+×R+ → R+ is said to be of classKL if, for
each fixed t , the function η(·, t) is of class K and, for each fixed s,
η(s, ·) is decreasing and limt→∞ η(s, t) = 0. For any given ζ ∈ K ,
define the operator ζ⊖: [0, ∞] → [0, ∞] as ζ⊖(s) = sup{v ∈

[0, ∞) : s ≥ ζ (v)}. By definition, one has ζ⊖(s) = ζ−1(s) for
s < limτ→∞ ζ (τ ), and ζ⊖(s) = ∞ elsewhere. Any non-decreasing
continuous function ζ : R+ → R+ is extended to the operator ζ :
[0, ∞] → [0, ∞] as ζ (s) = supv∈{w∈[0,∞):w≤s} ζ (v).

2. Definitions

2.1. Robustness w.r.t. deterministic disturbance

Consider the stochastic differential equation of Itô form

dx = f (x, r)dt + h(x)dw, (1)

where x(t) ∈ RN is the state, and r(t) ∈ RM is the deterministic
disturbance which is any measurable, locally essentially bounded
function r : R+ → RM . The drift field f : RN

× RM
→ RN

and the diffusion field h : RN
→ RN×S are locally Lipschitz. Let

(Ω, F , {Ft}t≥0, P) be a complete probability space with a sam-
ple space Ω , a probability measure P, a σ -algebra F , and a fil-
tration {Ft}t≥0 satisfying the usual conditions, i.e., the filtration
is right-continuous and F0 contains all P-null sets. Let w(t) =

[w1(t), w2(t), . . . , wS(t)]T be an S-dimensional standard Brown-
ian motion defined on the probability space. This paper uses the
following definition (Liu et al., 2008; Tang & Basar, 2001).

Definition 1. System (1) is said to be input-to-state practically
stable (ISpS) in probability if for each ϵ ∈ (0, 1), there exist a class
KL function β , a classK function γ and a real number b ≥ 0 such
that

P

|x(t)| < β(|x(0)|, t) + γ


sup

τ∈[0,t]
|r(τ )|


+ b


≥ 1 − ϵ, ∀t ∈ R+, x(0) ∈ RN

\ {0}. (2)

If b = 0, System (1) is said to be input-to-state stable (ISS) in
probability.

In this paper, system (1) is said to be 0-GAS in probability if (2)
is satisfied for r(t) ≡ 0 and b = 0 (see Krstić & Deng, 1998).

Definition 2. System (1) is said to be integral-input-to-state
practically stable (iISpS) in probability if for each ϵ ∈ (0, 1), there
exist a class KL function β , a class K function µ, a class K∞

function χ and a real number b ≥ 0 such that

P

χ (|x(t)|) < β(|x(0)|, t) +

 t

0
µ(|r(τ )|)dτ + bt


≥ 1 − ϵ, ∀t ∈ R+, x(0) ∈ RN

\ {0}. (3)

If b = 0, System (1) is said to be integral input-to-state stable (iISS)
in probability.

The above property with b = 0 is an exact analog of iISS for
deterministic systems (Sontag, 1998). Since stochastic noisewhose
magnitude can be arbitrarily large instantaneously may not allow
the initial state to fade out, the following variant is useful.

Definition 3. System (1) is said to be quasi-integral-input-to-
state practically stable (quasi-iISpS) in probability if there exists a
constant R > 0 satisfying the following: for each ϵ ∈ (0, 1), there
exist a class KL function β , class K functions β , µ, γ , a class K∞

function χ and a real number b ≥ 0 such that

P

χ (|x(t)|) < β(|x(0)|) +

 t

0
µ(|r(τ )|)dτ + bt


≥ 1 − ϵ, ∀t ∈ R+, x(0) ∈ RN

\ {0} (4)
∥r∥ < R ⇒ (2). (5)

If b = 0, System (1) is said to be quasi-integral input-to-state stable
(quasi-iISS) in probability.

Here, ∥ · ∥ denotes the (essential) supremum norm. Property
(4) does not guarantee 0-GAS in probability even if b = 0. It is
stressed that the functions β , β , γ , µ, χ and constant b in (2)–
(4) may depend on ϵ. Usually, it is inevitable that the smaller ϵ
is, the larger β , β , γ , µ and b should become. The bias b ≥ 0 in
all definitions in this subsection allows the diffusion field h to be
non-vanishing at the origin, In fact, b = 0 implies h(0) = 0 in all
definitions.
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