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a b s t r a c t

An algorithm is proposed for locating a feasible point satisfying the KKT conditions to a specified tolerance
of feasible inequality-path-constrained dynamic programs (PCDP) within a finite number of iterations.
The algorithm is based on iteratively approximating the PCDP by restricting the right-hand side of the path
constraints and enforcing the path constraints at finitely many time points. The main contribution of this
article is an adaptation of the semi-infinite program (SIP) algorithm proposed in Mitsos (2011) to PCDP.
It is proved that the algorithm terminates finitely with a guaranteed feasible point which satisfies the
first-order KKT conditions of the PCDP to a specified tolerance. The main assumptions are: (i) availability
of a nonlinear program (NLP) local solver that generates a KKT point of the constructed approximation to
PCDP at each iteration if this problem is indeed feasible; (ii) existence of a Slater point of the PCDP that
also satisfies the first-order KKT conditions of the PCDP to a specified tolerance; (iii) all KKT multipliers
are nonnegative and uniformly bounded with respect to all iterations. The performance of the algorithm
is analyzed through two numerical case studies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic optimization refers to mathematical programs
whereby the objective and constraint functions depend on the so-
lution of differential or difference equations. Dynamic optimiza-
tion has been widely applied in chemical engineering (Biegler,
2010; Srinivasan, Palanki, & Bonvin, 2003),mechanical engineering
(Hussein & Bloch, 2008; Shin &McKay, 1986), aerospace engineer-
ing (Bainum & Kumar, 1980) and other disciplines (Floudas et al.,
1999). Constrained dynamic optimization problems are practically
important, e.g., to enforce product quality or to guarantee safety
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(Feehery & Barton, 1998; Srinivasan et al., 2003). Constraints fall
in either one of two categories, namely point constraints and path
constraints. The former are usually expressed as functions of the
states at the end of time horizon, whereas the latter are functions
of the states and/or controls over the entire time horizon. The fo-
cus of this article is on dynamic optimizationwith path constraints.
Point constraints, which do not pose any further complication for
the approach herein, are omitted for simplicity. Throughout the ar-
ticle, it is assumed that a control vector parameterization has been
performed, i.e., a finite number of decision variables is assumed.

Numerical solution methods for such dynamic optimization
problems rely on nonlinear programming (NLP) techniques, ei-
ther with or without parameterization of the state trajectories.
In the simultaneous method, also known as orthogonal colloca-
tion approach (Betts & Huffman, 1992; Biegler, 2007; Tsang, Him-
melblau, & Edgar, 1975), the state trajectories are parameterized
and the residuals of the differential equations are enforced as con-
straints at specified collocation times. In the sequential method
(Biegler, 2010; Goh & Teo, 1988), the state trajectories are re-
garded as functions of the control decision variables. In the direct
multiple shooting method (Bock & Plitt, 1984), the state trajecto-
ries are formed by piecing together those of finite single shooting
problems on the corresponding subintervals over which the pa-
rameterized control is applied (see p. 243 in Bock & Plitt, 1984).
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Techniques for dealing with inequality path constraints have been
developed for the threemethods, e.g., Biegler (2010), Bock and Plitt
(1984), Dai and Cochran (2009), Feehery and Barton (1998), Fikar
(2001), Goh and Teo (1988), Jacobson and Lele (1969), Li, Yu, Teo,
and Duan (2011), Loxton, Teo, Rehbock, and Yiu (2009), Parida and
Raha (2009), Schlegel, Stockmann, Binder, and Marquardt (2005),
Teo, Rehbock, and Jennings (1993), Vassiliadis, Sargent, and Pan-
telides (1994) and White, Perkins, and Espie (1996). The common
feature of these techniques is that the path constraints are (explic-
itly or implicitly) enforced at finitelymany points only. Particularly
popular are discretization of the path constraints as interior-point
constraints and transcription as integral constraint, possibly used
in combination (Vassiliadis et al., 1994). The former method en-
forces the path constraint at a finite number of time points, so con-
straint violation can occur at any point other than those where the
constraints are enforced. The latter one enforces a time-integral of
the constraint violation as a constraint, which is allowed to be less
than or equal to a small positive constant for regularity reasons,
therefore allowing for small violations along the time horizon, too.
Particularly relevant to this article are the works by Chen and
Vassiliadis (2005) and by Potschka, Bock, and Schlöder (2009).
Chen and Vassiliadis (2005) presents an algorithm solving path-
constrained optimal control problems, yet violation of the path
constraints by a small amount cannot be prevented for a finite
number of iterations. Potschka et al. (2009) develops an algo-
rithm solving path-constrained optimal control problems (with-
out proof of convergence), but to the authors’ best knowledge
does not achieve both guaranteed rigorous satisfaction of path con-
straints and finite convergence. More recently, Zhao and Stadtherr
(2011) have described an algorithm capable of locating an ϵ-
estimated global optimum of path-constrained dynamic systems
with guaranteed satisfaction of the path constraints, but this
rigorous algorithm uses a deterministic global optimization ap-
proach, and as such it is currently applicable to problems with
a small number of degrees of freedom only. Note that indi-
rect methods can be used for the continuous optimal control
problem under the assumption that the switching structure of
the path constraint is known (Hannemann-Tamás & Marquardt,
2012). Note also that the α method in Peter, Parida, and Raha
(2010) can be used for infinite dimensional problems subject
to the regularization assumptions. With the exception of Zhao
and Stadtherr (2011), to our best knowledge, none of the ex-
isting methods can guarantee rigorous satisfaction of path con-
straints over the entire time horizon within a finite number of iter-
ations. It is the focus of this article to develop an algorithm for
path-constrained dynamic optimization problems that relies on lo-
cal optimization techniques, while coming with a certification of
feasibility for the path constraints.

An important class of optimization problems are semi-infinite
programs (SIP), namely optimization problems with a finite
number of decision variables but an infinite number of constraints.
For theoretical developments and applications of SIP, we refer the
reader to reviews (Hettich & Kortanek, 1993; Polak, 1987) and
latest results (Mitsos, 2011; Mitsos & Tsoukalas, 2015; Stein &
Steuermann, 2012). In the context of path-constrained dynamic
optimization, SIP formulations arise naturally if time is viewed as
the (single) parameter of SIP (Loxton et al., 2009; Sachs, 1998).
Through this connection, the work by Chen and Vassiliadis (2005)
can be seen as an adaptation of the SIP algorithm of Blankenship
and Falk (1976) to path-constrained dynamic optimization. The
work by Potschka et al. (2009) is essentially a first combination of
local reduction method of SIP (Hettich & Kortanek, 1993) with the
idea of Blankenship and Falk (1976) in the framework of the direct
multiple shooting method.

This article develops an algorithm for locating a feasible
point satisfying the KKT conditions to a specified tolerance of

semi-infinite-dimensional, inequality-path-constrained dynamic
programs (PCDP). Based on the right-hand restriction method
proposed inMitsos (2011) for standard SIP, the algorithmproceeds
by iteratively approximating the PCDP by restricting the right-
hand side of the path constraint and enforcing it at a finite num-
ber of time points. A dynamic optimization problem with finitely
many constraints is solved to local optimality at each iteration,
thereby making it possible to combine it with state-of-the-art lo-
cal dynamic optimization codes. It will be established that the al-
gorithm terminates finitely with a guaranteed feasible point and
a certificate of satisfaction of the first-order KKT conditions of the
PCDP to a specified tolerance under the following main assump-
tions: (i) availability of a nonlinear program (NLP) local solver that
generates a KKT point of the constructed approximate PCDP at
each iteration if this problem is indeed feasible; (ii) existence of a
Slater point of the PCDP that also satisfies the first-order KKT con-
ditions of the PCDP to a specified tolerance; and (iii) KKT multi-
pliers are nonnegative and uniformly bounded with respect to all
iterations.

The remaining part of the article is organized as follows. Sec-
tion 2 states the path-constrained dynamic optimization prob-
lems of interest, where for simplicity a single constraint is
considered. Section 3 describes the algorithm to locate a feasible
approximate KKT point of the path-constrained dynamic optimiza-
tion problemwith guaranteed satisfaction of path constraints, and
it also presents a proof of finite convergence of the algorithm. Sec-
tion 4 illustrates the property of guaranteed satisfaction of path
constraints and analyzes the effect of tuning parameters in the al-
gorithm using two numerical case studies. Section 5 presents con-
clusions and an outlook on future work.

2. Problem statement

We consider semi-infinite-dimensional, inequality-path-
constrained dynamic optimization problems of the form:

min
u∈U

S(x(tf , u))

s.t. g(x(t, u), u) ≤ 0, ∀t ∈ T ,
ẋ(t, u) = f (x(t, u), u), ∀t ∈ T ,
x(t0, u) = x0(u),

(PCDP)

where t ∈ T := [t0, tf ] represents the independent variable,
e.g., time; u ∈ U denote the time-invariant control/decision
variables, with U ⊂ Rn nonempty and compact; and x(·, u) is the
state response to a given control u, with x(t, u) ∈ X,∀(t, u) ∈
T ×U and X ⊂ Rnx nonempty and compact. The objective function
S : X → R, path-constraint function g : X × U → R, right-
hand-side function f : X × U → Rnx , and initial-value function
x0 : U → Rnx are all assumed to be continuously differentiable in
their respective arguments. No convexity assumptions are made,
but local solutions are considered.

Remark 1. Optimal control problems with control trajectories as
their decision variables can be approximated (restricted) into
(PCDP) via the control vector parameterization technique (Biegler,
2010; Lin, Loxton, & Teo, 2014; Loxton, Lin, Rehbock, & Teo, 2012;
Teo, Goh, & Wong, 1991). Moreover, problems with an integral
term as part of their objective function or with explicit time
dependence can be transformed into (PCDP) via the introduction
of extra variables and equations in the dynamic system (Chachuat,
2006–2007; Teo et al., 1991).

The main objective of this article is to develop an algorithm to
obtain a feasible point satisfying the KKT conditions of (PCDP) to a
specified tolerance.
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