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a b s t r a c t

In this paper, a new control scheme is proposed to achieve both stability and improvement of
performances for a single-machine infinite-bus power system. A high-order power system model is
presented and only measurable state variables are considered to be used in the feedback control. The
continuous and discontinuous excitation controllers, which have different characteristics to be chosen by
engineers to meet different practical needs and objectives of power system operation, are respectively
designed. The stability analysis and simulation results all show that the developed controllers are
effective.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, with the rapid developments and widespread
applications of electric power industry, human society has in-
creasing requirements and dependencies on electric power energy.
Once oscillations or breakouts of power systems occur, great eco-
nomic losses and society confusion will be caused. Consequently,
many research efforts have been devoted toward power system
stability which is one of the most significant problems needed to
be solved urgently in modern industries (Anderson & Fouad, 2003;
Mei, Ni, Wang, &Wu, 2008). To this end, advanced control systems
technologies are necessary and effective, which is a fact acknowl-
edged by the scientists and engineers in both academia and indus-
try (Grigsby, 2007; Isidori, 1995).

Due to the intrinsic nonlinear characteristics of power systems,
the studies on nonlinear control methods have been paid
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attentions, and there are many successful applications for the
design of power system controllers, such as generator excitation
control (Galaz, Ortega, Bazanella, & Stankovic, 2003; Shen, Mei, Lu,
Hu, & Tamura, 2003; Yan, Dong, Saha, & Majumder, 2010). To the
best knowledge of the authors, most of the existing results are
model-based nonlinear control strategies (Dimirovski, Jing, Li, &
Liu, 2006; Fu, Zhao, & Dimirovsk, 2006; Mei, Shen, & Liu, 2008;
Sun, Tong, & Liu, 2011; Sun, Zhao, & Dimirovski, 2009; Wan, Zhao,
& Dimirovski, 2014), thus, the mathematical models of power
systems play an important and fundamental role in the control
design for power systems.

For improving power system stability, the usual way is to de-
velop a control law by using a nonlinear control method based on
the classical third-order power system model which is a simpli-
fied version of the detailed one. Although this reduced-ordermodel
has been validated and confirmed from both theoretical and ex-
perimental perspectives (Arjona, Escarela-Perez, Espinosa-Perez, &
Alvarez-Ramirez, 2009; Kokotovic & Sauer, 1989), under complex
operating conditions, the unmodeled dynamics often can induce
power oscillations and even can cause system instability (Padi-
yar, 2008). Thus, if higher transient and steady-state performances
of power systems are pursued to meet increasingly sophisticated
power grids, the high-order model of power systems is necessary
to be used for the design of an effective control law.

However, in the detailed model, system state variables are
often not fully available for practical applications, for example, flux
linkages are unmeasurable and they cannot be used to construct a
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feedback control law (Wang, Song, & Irving, 2008). This is one of
reasonswhy the reduced-ordermodel is so popular for the study of
power system stability. In addition, usually, for a nonlinear control
method, there is a matching condition on the system structure, for
instance, the requirement of strict-feedback form for backstepping
design (Wan & Zhao, 2013). As far as the authors know, the
existing nonlinear control approaches could not directly solve the
stabilization problem of power systems based on the high-order
model. Therefore, it not only has practical significance, but also has
theoretical challenge to design a nonlinear controller based on the
detailed model using only feedback of measurable state variables.

Time-scale redesign is amethodology which was first proposed
by Chakrabortty and Arcak (2009) for stabilization and perfor-
mance recovery of nonlinear systems with unmodeled dynamics.
The main advantages of the redesign technique are as follows: the
state variables of unmodeled dynamics are not required for feed-
back; the nominal performance recovery can be achieved, that is,
the closed-loop trajectories of the systemwith unmodeled dynam-
ics can approach those of the nominal system. But there is a struc-
ture requirement for the nominal and the unmodeled parts, and
thus, this method is not applicable for all nonlinear systems such
as the high-order power system model. Thus, for this power sys-
tem model, achieving the nonlinear control design by using only
measurable variables is a challenging task.

In this paper, a high-order mathematical model that is highly
nonlinearly coupled betweenmeasurable andunmeasurable states
is considered, and based on this detailed model, a new nonlinear
control design framework for generator excitation is developed
by using only measurable states for feedback to ensure both
the stability and performances of SMIB, which is an important
problem, and almost no theoretical results are available in the
control literature. Moreover, the following two points also belong
to the main characteristics of the proposed method. First, the
transient and steady-state performances are improved compared
with existing results based on the simplified model. Second, this
method is also applicable to other nonlinear systemswith partially
measurable state variables.

The paper is organized as follows. A detailed model of
power system is described in Section 2. In Section 3, two kinds
of nonlinear controller for generator excitation are designed.
Section 4 gives stability analysis for the closed-loop system with
the designed controllers. The simulation results are presented in
Section 5. Conclusions are drawn in Section 6.

2. System dynamic model and problem statement

Most of the existing results for power system control are
obtained based on the classical simplified third-ordermodelwhich
eliminates the effects of d-axis transient flux linkage, d- and q-axis
sub-transient flux linkages, and the dynamics of the mechanical
power and the exciter (Dib, Kenné, & Lamnabhi-Lagarrigue, 2009).

Different from that, this section presents a high-order dynamic
model which is identified as the most detailed and representative
in power system transient stability studies and is necessary for
high-precision control requirements (Padiyar, 2008). For example,
for the rotor, this model includes the transient effects of a field
winding ‘f’ on the d-axis and a damper winding ‘g’ on the q-axis,
and also the sub-transient effects of two damper windings ‘h’ and
‘k’ respectively on the d-axis and q-axis.

Next, Sections 2.1–2.5 provide basic equations of power
systems such as the detailed generator model, network equation,
etc. Thenbased on these equations, Section 2.6 derives a high-order
power systemmodel, and Section 2.7 gives somediscussions on the
differences between the presented and simplifiedmodel. Themain
problems to be solved in this paper are described in Section 2.8.

2.1. Mechanical equation

δ̇ = ω,
ω̇ = −(D/H)ω + vs(Pe, Pm),
Ṗm = −(1/Th)(Pm + PTuh),

(1)

where δ is the power angle in rad; ω is the relative speed in rad/s;
D is the damping coefficient in p.u.; H is the inertia constant in s;
ω0 is the synchronous speed in rad/s; Pm is the mechanical power
in p.u.; Pe is the active power in p.u.; Th is the time constant in s; PT
is the throttle pressure in p.u.; uh is the governor value position in
p.u.; vs(Pe, Pm) = (ω0/H)(Pm − Pe).

2.2. Stator equation

E ′′
− ZsI = V ,

E ′′
− Csψ = 0, (2)

where E ′′

d and E ′′
q are the d- and q-axis stator sub-transient voltages

in p.u., E ′′
= [E ′′

q E ′′

d ]
T ; id and iq are the d- and q-axis stator

currents in p.u., I = [iq id]T ; Vd and Vq are the d- and q-axis
stator voltages in p.u.,V = [Vq Vd]

T ; xf is the d-axis fieldwinding
reactance in p.u., xh and xg , xk are the d- and q-axis damperwinding
reactances in p.u., xfh is the d-axis field-damper mutual reactance
in p.u., xgk is the q-axis mutual reactance in p.u., d1 = xf xh − x2fh,
d2 = xgxk−x2gk; xdf , xdh and xqg , xqk are the d- and q-axis stator–rotor
mutual reactances in p.u., c1 = (xdf xh − xdhxfh)/d1, c2 = (xdhxf −

xdf xfh)/d1, c3 = (xqgxk − xqkxgk)/d2, c4 = (xqkxg − xqgxgk)/d2,

c1 = [c1 c2], c2 = [c3 c4], Cs =


c1 0
0 −c2


; xd and xq are the

d- and q-axis synchronous reactances in p.u., x′′

d and x′′
q are the d-

and q-axis sub-transient reactances in p.u., x′′

d = xd − c1xdf − c2xdh,
x′′
q = xq − c3xqg − c4xqk, ra is the stator resistance in p.u., Zs =
ra −x′′d
x′′q ra


; ψf and ψg are the d- and q-axis transient flux linkages

in p.u., ψh and ψk are the d- and q-axis sub-transient flux linkages
in p.u., ψ = [ψf ψh ψg ψk]

T .

2.3. Network equation

Vs (δ)+ ZeI = V , (3)

whereVs is the infinite bus voltage in p.u.,Tf (δ) =

cos δ − sin δ

T ,
Vs(δ) = VsTf (δ); re and xe are the external resistance and reactance

viewed from generator terminal in p.u., Ze =


re −xe
xe re


.

2.4. Rotor equation

ψ̇ = A0ψ + B0I + Ef , (4)
where rf , rh, rg and rk are the rotor resistances in p.u., a1 =

−ω0rf xh/d1, a2 = ω0rf xfh/d1, a3 = ω0rhxfh/d1, a4 = −ω0rhxf /d1,
a5 = −ω0rgxk/d2, a6 = ω0rgxgk/d2, a7 = ω0rkxgk/d2, a8 =

−ω0rkxg/d2, A01 =


a1 a2
a3 a4


, A02 =


a5 a6
a7 a8


, A0 =


A01 0
0 A02


;

b1 = ω0rf /xdf , b2 = ω0rf c1, b3 = ω0rhc2, b4 = ω0rgc3, b5 =

ω0rkc4, B0 =


0 0 b4 b5
b2 b3 0 0

T
; Efd is the field excitation voltage

in p.u., Ef =

b1Efd 0 0 0

T .
2.5. Exciter equation

Ėfd = −(1/TE)[(KE + SE)Efd − VF ], (5)
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