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a b s t r a c t

In this paper we derive the stochastic differentials of the conditional central moments of the nonlinear
filtering problems, especially those of the polynomial filtering problem, and develop a novel suboptimal
method by solving this evolution equation. The basic idea is to augment the state of the original nonlinear
system by including the original states’ conditional centralmoments such that the augmented states form
a so-called bilinear system after truncating. During our derivation, it is clear to see that the stochastic
differentials of the conditional central moments of the linear filtering problem (i.e., f , g and h are all at
most degree one polynomials) form a closed system automatically without truncation. This gives one
reason for the existence of optimal filtering for linear problems. On the contrary, the conditional central
moments form an infinite dimensional system, in general. To reduce it to a closed-form, we let all the
high enough central moments to be zero, as one did in the Carleman approach (Germani et al., 2007).
Consequently, a novel suboptimal method is developed by dealing with the bilinear system. Numerical
simulation is performed for the cubic sensor problem to illustrate the accuracy and numerical stability.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear filtering (NLF) problem has been extensively
studied since the linear one has been satisfactorily solved by
Kalman in 1960s. But until now there exists no universal optimal
method for the general nonlinear settings. The main goal of NLF
is to get ‘‘good’’ estimation of the conditional expectation, or
perhaps even the conditional density function of the state, given
the observation history. We refer the readers to the book by
Jazwinski (1970) for excellent introduction to NLF.

One possible general method to NLF is the so-called global ap-
proaches, see the survey paper (Luo, 2014) for more detailed dis-
cussion. All these methods try to solve analytically or numerically
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for the conditional density function. One of the most recent global
approach is Yau–Yau’s on- and off-line algorithm, which is first de-
rived in Yau and Yau (2008) and further generalized to nonlinear
time-varying setting in Luo and Yau (2013). The Yau–Yau’smethod
works for all NLF problems theoretically, however, there are still
some technicalworks to bedone for high-dimensional states’ prob-
lem, say to overcome ‘‘the curse of dimensionality’’. Therefore, cer-
tain suboptimal methods still need to be developed.

Another possible way-out to solve the general NLF problems
stems from the local approaches, especially the Kalman filter and
its derivatives. The basic idea is to augment the states of the
original NLF problem in certain way such that the augmented
states satisfy a linear or so-called bilinear system (Carravetta,
Germani, & Shuakayev, 2000). Generally speaking, one cannot
obtain a closed system unless it is Benes’ filter (Benes, 1981) or Yau
filter (Yau, 1994). The suboptimal filtering therefore is derived by
truncating the infinite-dimensional system in some way. In this
direction, Basin (2003) is the first paper where the conditional
higher order moments were employed for suboptimal polynomial
filtering (PF). Later, a series of papers, say (Basin, 2008; Basin,
Shi, & Calderon-Alvarez, 2010) and references therein follow this
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line. Based on the suboptimal approach introduced for the bilinear
system in Carravetta et al. (2000) and Germani, Manes, and
Palumbo (2007) developed a Carleman approximation approach
for the NLF problems. In their paper, the higher moments are
omitted to forma finite-dimensional system.However, it is as early
as in 1967 that Kushner (1967) considered themoment sequences.
Even in the one-dimensional problem, the moment sequence has
to satisfy the following inequalities:

m2 > 0, m4 > m2
2, m6 > m2

4/m2, . . . ,

where ms, s = 1, 2, . . . represent the s-moment of some random
variable. In particular, if the random variable is the standard
Gaussian, then all the highermoments can be computed explicitly:

ms =


0, all odd s ≥ 1
(s − 1)!!ms

2, all even s ≥ 2,

where (s − 1)!! = 1 · 3 · 5 · · · · (s − 1), if s is even. It is easy to see
that no matter how smallm2 is, the even moments grows without
bound as s → ∞. Therefore, it is inappropriate to let all the higher
moments to be zero, even in the Gaussian case.

In this paper, we propose a novel suboptimal method (NSM)
for the PF problems by observing the evolution of the conditional
central moments of the states. Instead of augmenting the states
by their higher moments as in the Carleman approach, we
derive the evolution of the higher central moments, and omit the
high enough ones to form a finite-dimensional system. Another
novelty of this paper is that we provide an explanation why the
optimalmethod can be derived only for the linear/bilinear filtering
problems from the viewpoint of the evolution of the conditional
higher central moments. According to Theorem 2, the stochastic
differentials of the conditional central moments form a closed
system automatically without truncation, if the linear/bilinear
filtering problem is considered.

2. Filtering model and notations

The model we consider here is:
dxt = f (xt , t)dt + g(t)dvt
dyt = h(xt , t)dt + dwt ,

(2.1)

where xt , vt , yt , and wt are Rn
−, Rp

−, Rm
−, and Rm

−valued
processes, respectively, and f : Rn

× R+ → Rn, g : R+ → Rn×p,
h : Rn

×R+ → Rm are polynomials with respect to x. Assume that
{vt , t > 0} and {wt , t > 0} are Brownian motion processes with
Var[dvt ] = Q (t)dt andVar[dwt ] = R(t)dt , respectively.Moreover,
{vt , t > 0}, {wt , t > 0} and x0 are independent, and y0 = 0.

The conditional expectation for certain process xt is denoted asxt := E[xt | Yt ] for short, where Yt := {ys : 0 ≤ s ≤ t} is
the observation history. Also the a priori conditional expectation is
denoted as (◦)− := E[◦ | Yt− ], where Y− := {ys : 0 ≤ s ≤ t−}.

In this paper, we shall use the Kronecker algebra for concise-
ness. For the quick survey on the Kronecker product and its prop-
erties can be found in Carravetta, Germani, and Raimondi (1996).
For the readers’ convenience, we include some simple facts of Kro-
necker algebra here. The Kronecker product ⊗ is defined for any
two matricesMr×s and Np×q:

M ⊗ N :=

m11N · · · m1sN
· · · · · · · · ·

mr1N · · · mrsN


.

Let M [i] denote the ith Kronecker power of the matrix M , which is
defined as

M [0]
= 1; M [i]

= M ⊗ M [i−1]
= M [i−1]

⊗ M.

The stack of the matrixMr×s := [m1,m2, . . . ,ms] is defined as

st(M) =

mT

1 mT
2 · · · mT

s

T
,

where mi is the ith column of M . The inverse operation of the
stack can reduce a vector into a matrix with proper size. That is,
M = st−1

r×sst(M). The following are properties of Kronecker product
and the stack operation:

(A + B)⊗ (C + D) = A ⊗ C + A ⊗ D + B ⊗ C + B ⊗ D (2.2)
(A ⊗ B)⊗ C = A ⊗ (B ⊗ C) (2.3)

(A · C)⊗ (B · D) = (A ⊗ B) · (C ⊗ D), (2.4)

u ⊗ v = st(v · uT ), (2.5)

where A, B, C , and D are matrices with suitable size, u and v are
vectors. As the usual matrix multiplication, Kronecker product is
not commutative. Given any two matrices A ∈ Rra×sa and B ∈

Rrb×sb , then

B ⊗ A = CT
ra,rb(A ⊗ B)Csa,sb ,

where Ca,b is an orthonormal commutative matrix in {0, 1}ab×ab

with its entry (h, l) given by

{Ca,b}h,l =

1, if l = (|h − 1|b)a +


h − 1

b


+ 1


0, otherwise,

where [·] and | · |s denote the integer part and s-modulo,
respectively. The Kronecker power of a binomial, (a + b)[i] allows
the following expansion:

(a + b)[i] =

i
j=0

M i
j


a[j]

⊗ b[i−j] , (2.6)

for any a, b ∈ Rn, whereM i
j ∈ Rn×n can be recursively computed

Mh
h =Mh

0 = Inh ,

Mh
j =(Mh−1

j ⊗ In)+ (Mh−1
j−1 ⊗ In)(Inj−1 ⊗ Gh−j),

and {Gl} is a sequence that satisfies the following equations:

G1 = CT
n,n, Gl = (In ⊗ Gl−1) · (G1 ⊗ Inl−1).

See detailed derivation in Carravetta et al. (1996).
In the derivation of our NSM for PF problems, the Itô formula for

the computation of stochastic differentials is needed (see Liptser &
Shiryayev, 1977). For any vector function ψ(xt) : Rn

→ Rr , we
have

dψ = (∇x ⊗ ψ)|xt dxt +
1
2


∇

[2]
x ⊗ ψ


xt
(dxt ⊗ dxt). (2.7)

The differential operator ∇
[i]
x ⊗ applied to ψ is defined as

∇
[0]
x ⊗ ψ = ψ, ∇

[i+1]
x ⊗ ψ = ∇x ⊗


∇

[i]
x ⊗ ψ


, i ≥ 1,

with ∇x =


∂
∂x1

∂
∂x2

· · ·
∂
∂xn


.

3. NSM for PF problems

3.1. Derivation of stochastic differentials for higher central moments

It is well-known from Jazwinski (1970) that the conditional
mean of the process xt satisfies

dx̂t = f̂ dt + P [1]hTR−1

dy − ĥdt


=


f̂ + P [1]hTR−1(h − ĥ)


dt + P [1]hTR−1dwt , (3.8)
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