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a b s t r a c t

In this paper,weproposenewconditions guaranteeing that the trajectories of amechanical control system
can track any curve on the configurationmanifold. We focus on systems that can be represented as forced
affine connection control systems and we generalize the sufficient conditions for tracking known in the
literature. The new results are proved by a combination of averaging procedures by highly oscillating
controls with the notion of kinematic reduction.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

New geometric techniques are used to generalize tracking con-
ditions known in the literature (Barbero-Liñán & Sigalotti, 2010;
Bullo & Lewis, 2005; Chambrion & Sigalotti, 2008). The tracking
problem plays a key role in the performance of robots and me-
chanical systems such as submarines and hovercrafts in order to
avoid obstacles, stay nearby a preplanned trajectory, etc. Mechani-
cal control systems are control-affine systems on the tangent bun-
dle of the configurationmanifoldQ . In order to simplify themotion
planning tasks for these control systems, a useful tool has been in-
troduced in the geometric control literature, namely, the notion
of kinematic reduction. Such a procedure consists in identifying
a control-linear system on Q whose trajectories mimic those of
the mechanical system. This approach has been useful to describe
controllability, planning properties (Bullo & Lewis, 2005) and opti-
mality (Barbero-Liñán &Munoz-Lecanda, 2010) ofmechanical sys-
tems. However, as described in Bullo and Lewis (2005), kinematic
reduction is not always possible, some conditions related to the
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symmetric closure of the control vector fields of both systems un-
der studymust be satisfied. In our previous work (Barbero-Liñán &
Sigalotti, 2010) we proposed two extensions of the first-order suf-
ficient conditions for tracking proposed in Bullo and Lewis (2005),
each of them based on the construction of a family of ‘compati-
ble’ vector fields, one family being of finite and the other one of
infinite cardinality. Related constructions to generate admissible
directions for tracking have been proposed in Bressan and Wang
(2009); Martínez and Cortés (2003) (see also Agrachev & Sarychev,
2005, 2006). Our goal here is to obtainmore general sufficient con-
ditions for tracking, combining our previous resultswith the notion
of kinematic reduction. More precisely, our aim is to identify con-
ditions under which it is possible to associate with a mechanical
system a kinematic reduction whose controlled vector fields are
compatible with tracking in the sense of Barbero-Liñán and Siga-
lotti (2010). Trackability of the mechanical system will then fol-
low from controllability of the kinematic reduction. The proposed
approach applies directly to families of compatible vectors fields
of finite cardinality (see Theorem 14). The infinite cardinality case
requires some intermediate technical result. In particular, we are
lead to establish a relationship between families of vector fields de-
fined pointwise and sets of sections of the tangent bundle, in anal-
ogy to the classical Malgrange theorem (Malgrange, 1967). Based
on such a pointwise characterization of infinite families of com-
patible vector fields, we obtain new sufficient conditions for track-
ing extending the results in Barbero-Liñán and Sigalotti (2010) (see
Theorem 15). The newly obtained conditions are used to complete
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the analysis of the control properties of an underwater vehicle ini-
tiated in Chambrion and Sigalotti (2008), proving its trackability
even in the most symmetric case (see Section 4.4 for details).

2. Notation and preliminaries

Denote by N the set of positive natural numbers and fix n ∈ N.
From now on, Q is a n-dimensional smooth manifold and X(Q )
denotes the set of smooth vector fields on Q . All vector fields are
considered smooth as functions on Q , unless otherwise stated. Let
τQ : TQ → Q be the canonical projection.Wedenote by I a compact
interval of the type [0, τ ], τ > 0.

2.1. Affine connection control systems

Definition 1. An affine connection is a mapping

∇:X(Q ) × X(Q ) −→ X(Q )
(X, Y ) −→ ∇(X, Y ) = ∇XY ,

satisfying the following properties: (1) ∇ is R-linear in X and in Y ;
(2)∇fXY = f∇XY for every f ∈ C∞(Q ); (3)∇X fY = f∇XY+(Xf ) Y ,
for every f ∈ C∞(Q ). (Here Xf denotes the derivative of f in the
direction X .)

Themapping∇XY is called the covariant derivative of Y with respect
to X .

Definition 2. A forced affine connection control system (FACCS)
is a control mechanical system given by Σ = (Q , ∇, Y , Y )where:
Q is a smooth n-dimensional manifold called the configuration
manifold, Y : R × TQ → TQ is smooth, affine with respect to the
velocities, and such that (τQ ◦Y )(t, ·) = τQ for every t , Y is a finite
set {Y1, . . . , Yk} of control vector fields on Q . A trajectory γ : I ⊂

R → Q is admissible for Σ if γ̇ : I → TQ is absolutely continuous
and there exists ameasurable and bounded control u: I → Rk such
that the dynamical equations of the control system Σ

∇γ̇ (t)γ̇ (t) = Y (t, γ̇ (t)) +

k
a=1

ua(t)Ya(γ (t)), (1)

are fulfilled (for almost every t ∈ I).

The vector field Y includes all the non-controlled external forces;
e.g., the potential and the non-potential forces. The assumption
that Y is affine with respect to the velocities means that, for every
q ∈ Q and t ∈ R, the map TqQ ∋ v → Y (t, v) ∈ TqQ is affine.

3. Tracking problem

Weconsider here the problem arisingwhen one tries to follow a
particular trajectory on the configurationmanifold, called reference
or target trajectory, which is in general not a solution of the
FACCS considered. A trajectory is successfully tracked if there
exist solutions to the FACCS that approximate it arbitrarily well.
Consider in what follows any distance d:Q × Q → R on Q whose
corresponding metric topology coincides with the topology on Q .

Definition 3. A curve γ : I → Q of class C1 is trackable for the
FACCSΣ if, for every strictly positive tolerance ϵ, there exist a con-
trol uϵ

∈ L∞(I, Rk) and a solution ξ ϵ: I → Q to Σ corresponding
to uϵ such that ξ ϵ(0) = γ (0) and d(γ (t), ξ ϵ(t)) < ϵ for every
t ∈ I . The trajectory is said to be strongly trackable for Σ if, in
addition to the above requirements, for every ϵ > 0 the approx-
imating trajectory ξ ϵ may be found also satisfying ξ̇ ϵ(0) = γ̇ (0).
A control system Σ satisfies the configuration tracking property
(CTP) (respectively, the strong configuration tracking property
(SCTP)) if every curve on Q of class C1 is trackable (respectively,
strongly trackable) for Σ .

Remark 4. Since any C1 curve can be uniformly approximated,
with arbitrary precision, by a smooth curve having the same tan-
gent vector at its initial point, then Σ satisfies the CTP (respec-
tively, the SCTP) if and only if every curve on Q of class C∞ is
trackable (respectively, strongly trackable) for Σ .

3.1. Tracking results for control-linear systems

A control-linear system (also called driftless kinematic system) on
Q is a pair (Q , X )where X is a finite subset {X1, . . . , Xm} ofX(Q ),
identified with the control system

γ̇ (t) =

m
a=1

ua(t)Xa(γ (t)), γ (t) ∈ Q ,

where u1, . . . , um are L∞ real-valued functions.

Proposition 5 (See Liu, 1997; Sussmann&Liu, 1991). Let X1, . . . , Xm
be smooth vector fields on Q and take κ ∈ N. Let {X1, . . . , Xs} be
the set of all Lie brackets of the vector fields X1, . . . , Xm of length less
than or equal to κ . Assume that γ : I → Q is a C∞ curve such that
γ̇ (t) =

s
a=1 wa(t)Xa(γ (t)), with w : I → Rs smooth. Then, for

every ϵ > 0 there exists a solution γϵ of the control-linear system
(Q , {X1, . . . , Xm}) with smooth control uϵ : I → Rm and initial
condition γϵ(0) = γ (0) such that d(γ (t), γϵ(t)) < ϵ for every t ∈ I .

From the above proposition we deduce the following result.
(Similar arguments can be found in Jakubczyk (2002).)

Corollary 6. If the Lie algebra Lie(X1, . . . , Xm) generated by X1, . . . ,
Xm has constant rank on Q , then for every smooth curve γ : I →

Q such that γ̇ (t) ∈ Lieγ (t)(X1, . . . , Xm) for every t ∈ I and for
every ϵ > 0 there exists a solution γϵ of the control-linear system
(Q , {X1, . . . , Xm}) with smooth control uϵ : I → Rm and initial
condition γϵ(0) = γ (0) such that d(γ (t), γϵ(t)) < ϵ for every t ∈ I .

Proof. The proof works by covering the compact set γ (I) by
finitely many open sets Ω1, . . . , ΩK of Q such that for every
j = 1, . . . , K there exists on Ωj a basis of the distribution
Lie(X1, . . . , Xm) made of Lie brackets of X1, . . . , Xm. Let κ be the
maximum of the length of the brackets used to construct such
bases and let {X1, . . . , Xs} be the set of all Lie brackets of the vec-
tor fields X1, . . . , Xm of length less than or equal to κ . Then γ̇ (t) =s

a=1 wa(t)Xa(γ (t)), with w : I → Rs smooth, where smooth-
ness follows from the fact that Lie(X1, . . . , Xm) has constant rank.
We then conclude by Proposition 5. �

3.2. Previous strong configuration tracking results

Conditions guaranteeing the SCTP have been obtained in
Barbero-Liñán and Sigalotti (2010), generalizing previous results
presented in Bullo and Lewis (2005) (in particular Theorem 12.26)
and in Chambrion and Sigalotti (2008). We recall them here below
in a version adapted to what follows. The main difference of
these statements from the ones of Theorem 4.4 and Corollary 4.7
in Barbero-Liñán and Sigalotti (2010) is that here we focus on the
strong configuration trackability of a given trajectory, instead of
looking at the SCTP. The proof is however the same, since the
proof proposed in Barbero-Liñán and Sigalotti (2010) is based on
an argument where the target trajectory is also fixed.

We need to introduce the symmetric product in X(Q ) defined
by ⟨X: Y ⟩ = ∇XY + ∇YX for every X, Y ∈ X(Q ). For subsets A, B of
X(Q ), A − B = {X − Y | X ∈ A, Y ∈ B}, L(A) = A ∩ (−A), co(A)
denotes the convex hull of A, and A is the closure of A in X(Q ) with
respect to the topology of the uniform convergence on compact
sets.
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