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a b s t r a c t

The main purpose of this work is to provide a unified framework and develop integral fractional
pseudospectral methods for solving fractional optimal control problems. As a generalization of
conventional pseudospectral integrationmatrices, fractional pseudospectral integrationmatrices (FPIMs)
and their efficient and stable computation are the key to our new approach. In order to achieve this
goal, we take a special and smart way to compute FPIMs. The essential idea is to transform the fractional
integral of Lagrange interpolating polynomials through a change of variables into their Jacobi-weighted
integral which can be calculated exactly using the Jacobi–Gauss quadrature. This, together with the stable
barycentric representation of Lagrange interpolating polynomials and the explicit barycentric weights for
the Gauss-, flipped Radau-, and Radau-type points corresponding to the Jacobi polynomials, leads to an
exact, efficient, and stable scheme to compute FPIMs even at millions of Jacobi-type points. Numerical
results on two benchmark optimal control problems demonstrate the performance of the proposed
pseudospectral methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control problems arise naturally in various areas of
science, engineering, and mathematics. Considerable work has
been done in the area of integer optimal control problems
(IOCPs) whose dynamics are described by conventional integer
differential equations (see, e.g., Bryson & Ho, 1975; Lewis, Vrabie,
& Syrmos, 2012 and the references therein). Recently, it has
been demonstrated that fractional differential equations are
more accurate than integer differential equations to describe the
dynamic behavior of many real-world physical systems (Tarasov,
2011). As defined in Agrawal (2004), fractional optimal control
problems (FOCPs) are a subclass of optimal control problems
whose dynamics are described by fractional differential equations.
There are various definitions of fractional derivatives and the two
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most important types are the Riemann–Liouville derivatives and
the Caputo derivatives. It is important to point out that, unlike
the integer derivatives which are locally defined on the epsilon
neighborhood of a chosen point, the fractional derivatives are
globally defined by a definite integral over thewhole domain.More
background information on the fractional calculus can be found in
Sabatier, Agrawal, and Tenreiro Machado (2007).

It is well known that the analytical solution of FOCPs generally
does not exist except for special cases, and therefore, numerical
methods to obtain an approximate solution have become the
preferred approach for solving FOCPs. In general, numerical
methods for solving FOCPs fall into two major categories:
indirect methods and direct methods. In an indirect method,
necessary optimality conditions of a FOCP are derived by using the
fractional calculus of variations, leading to a fractional multiple-
point boundary value problem that is then solved to obtain
candidate optimal solutions. In a directmethod, a continuous FOCP
is transcribed to a finite-dimensional nonlinear programming
problem (NLP) through the parameterization of the state and/or
control variables in some manner, and the resulting NLP is then
solved using well-known optimization software. Inspired by the
aforementioned global property of the fractional derivatives, it is
quite natural for us to conjure up that global direct methods, such
as pseudospectral methods, are perhaps more suitable than other
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methods for solving FOCPs. Yet unfortunately, to the extent of our
knowledge, pseudospectral methods for solving FOCPs have not
received attention although they have been extensively used in
the numerical solution of IOCPs such as the Gauss pseudospectral
method (GPM) (Benson, Huntington, Thorvaldsen, & Rao, 2006)
and the Radau pseudospectral method (RPM) (Garg et al., 2011), to
name a few but two. There are two primary implementation forms
for pseudospectral methods: differential and integral. In this work,
we focus on the latter, i.e., integral pseudospectral methods.

The motivation of this paper is to provide a unified framework
and develop integral fractional pseudospectral methods for
solving FOCPs. As a generalization of conventional pseudospectral
integration matrices (Francolin, Benson, Hager, & Rao, 2015; Garg
et al., 2010; Tang, 2015), fractional pseudospectral integration
matrices (FPIMs) and their efficient and stable computation are
the key to our new approach. We point out that Garg et al. (2010)
touched on the framework for solving IOCPs using pseudospectral
methods in a very different context of the equivalence between
differential and integral pseudospectral methods as well as their
key mathematical properties. Specifically, the main contributions
of this work are as follows:

(i) We provide a unified framework for solving FOCPs using inte-
gral pseudospectral methods, filling the gap between the nu-
merical solution of FOCPs and IOCPs. This is actually feasible
because IOCPs are recovered from FOCPs when fractional or-
der γ = 1. Under the framework, we develop novel inte-
gral fractional pseudospectralmethods using collocation at the
Gauss- and flipped Radau-type points, respectively. The latest
integral GPM (IGPM) and integral flipped RPM (IFRPM) pre-
sented in Francolin et al. (2015) can be viewed as special cases
of the corresponding integral fractional pseudospectral meth-
odswith γ = 1.Moreover, this unified framework even allows
for solving hybrid optimal control problems (HOCPs) whose
dynamics contain both the fractional and integer derivatives
(Pooseh, Almeida, & Torres, 2014), and also inspires us to ex-
tend the framework of Garg et al. (2010) to the case of FOCPs
in the future.

(ii) We propose the notion of FPIMs and take a special and smart
way to compute FPIMs efficiently and stably. The essential
idea is to transform the fractional integral of Lagrange in-
terpolating polynomials through a change of variables into
their Jacobi-weighted integral which is then calculated exactly
using the Jacobi–Gauss (JG) quadrature. As a result, the compu-
tation of FPIMs is reduced to the calculation of Lagrange inter-
polating polynomials which can be further represented in the
stable barycentric form. In particular, the barycentric weights
for the Gauss-, flipped Radau-, and Radau-type points can be
expressed explicitly in terms of the corresponding quadrature
weights for classic orthogonal polynomials (Wang, Huybrechs,
& Vandewalle, 2014) such as the Jacobi polynomials. There-
fore, this novel approach leads to an exact, efficient, and sta-
ble scheme to compute FPIMs even at millions of Jacobi-type
points.

The rest of this paper is organized as follows. In Section 2, some
preliminaries are presented for subsequent developments. In Sec-
tion 3, the differential and integral forms of scaled FOCP are de-
scribed. The definitions and computation of FPIMs are presented in
Section 4. In Section 5, the implementation details of integral frac-
tional pseudospectral methods are described. Numerical results on
two benchmark problems are shown in Section 6. Finally, Section 7
contains some concluding remarks.

2. Some preliminaries

In this work, the left and right Riemann–Liouville fractional
integrals of real order γ ≥ 0 of a function h(t), t ∈ [t0, tf ] are

denoted by t0 Iγ
t h(t) and t Iγ

tf h(t), respectively. Accordingly, the left
and right Caputo fractional derivatives of real order γ ∈ (n −

1, n], n = ⌈γ ⌉ ∈ N of a function h(t) are denoted, respectively,
by C

t0 Dγ
t h(t) and C

t Dγ
tf h(t) where ⌈γ ⌉ denotes the smallest integer

greater than or equal to γ . In particular, we have t0 I0
t h(t) =

t I0
tf h(t) =

C
t0 D0

t h(t) =
C
t D0

tf h(t) = h(t).
The fractional integrals and derivatives have the following

properties (Podlubny, 1998):

t0 Iγ
t

ζ · h(t) + ϱ · q(t)


= ζ · t0 Iγ

t h(t) + ϱ · t0 Iγ
t q(t) (1a)

t Iγ
tf


ζ · h(t) + ϱ · q(t)


= ζ · t Iγ

tf h(t) + ϱ · t Iγ
tf q(t) (1b)

t0 Iγ
t
 C
t0 Dγ

t h(t)


= h(t) −

⌈γ ⌉−1
j=0

h(j)(t0)
j!

(t − t0)j (1c)

t Iγ
tf

C
t Dγ

tf h(t)


= h(t) −

⌈γ ⌉−1
j=0

(−1)jh(j)(tf )
j!

(tf − t)j (1d)

where ζ and ϱ are constants.

Theorem 1. There hold

t0 Iγ
t h(t) =


tf − t0

2

γ

· −1Iγ
τ h(τ ; t0, tf ) (2a)

C
t0 Dγ

t h(t) =


2

tf − t0

γ

·
C

−1Dγ
τ h(τ ; t0, tf ) (2b)

where

t =
tf − t0

2
τ +

tf + t0
2

, τ ∈ [−1, +1]. (3)

Note that the same results also hold for the corresponding right
counterparts.

Proof. The derivation is straightforward, and hence, is omitted
here for brevity. �

3. Differential and integral forms of scaled FOCP

3.1. Differential form of scaled FOCP

Consider the following general FOCP. Determine the state,
x(t) ∈ Rnx , control, u(t) ∈ Rnu , initial time, t0 ∈ R, and final
time, tf ∈ R, on the time interval t ∈ [t0, tf ] that minimize the
cost functional

J = φ(x(t0), t0, x(tf ), tf ) +

 tf

t0
g(x(t), u(t), t) dt, (4)

subject to the dynamic constraints (γ ∈ (0, 1])

C
t0 Dγ

t x(t) = f (x(t), u(t), t), (5)

the inequality path constraints

c(x(t), u(t), t) ≤ 0, (6)

and the boundary conditions

b(x(t0), t0, x(tf ), tf ) = 0. (7)

Using Eqs. (3) and (2b), the FOCP of Eqs. (4)–(7) is then converted
to the scaled FOCP in terms of the variable τ as follows. Determine
the state, x(τ ) ∈ Rnx , control, u(τ ) ∈ Rnu , initial time, t0 ∈ R,
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