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A bilinear dynamical system can be used to represent the model of a network in which the state obeys
linear dynamics and the input is the edge weight of certain controlled edges in the network. We present
algebraic and graph-theoretic conditions for the structural controllability of a class of bilinear systems
with a single control where the input matrix is rank one. Subsequently, we use these conditions, given a
system state graph, to develop an algorithm to design the location of controlled edges (the input matrix)

such that the system is structurally controllable.
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1. Introduction

Recent studies have employed concepts from structural control
in order to bring control theoretic analysis to large-scale complex
networks. The rapid rise of computational capabilities and access
to data in recent years has led to modeling many important sys-
tems - from intracellular biochemical pathways to the redesigned
smart power grid - as networks (Newman, 2010). Understanding
fundamental control properties is a key requirement to system-
atically studying and, ultimately, influencing these important sys-
tems. Classic control techniques, however, do not scale well to pro-
vide a feasible assessment of these properties. Structural control
has proven to be a useful tool towards this goal.

Structural controllability is a generalization of classic controlla-
bility in which systems are analyzed based only on their structure,
i.e., the existence or absence of a direct effect of one state on the
change of another, and not the exact rate at which the states influ-
ence each other. Structural control is, therefore, “parameter free”
in the sense that the analysis holds for all parameter values, except
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for specific pathological cases. This type of control is well-suited
to analyze network systems by providing simplifications to make
methods tractable and a set of tools that do not depend on exact
parameter values, because such values are rarely known for most
networks.

Conditions for structural controllability rely on classical control
results, therefore, the analysis of networks has been limited to
the case of linear dynamical systems, modeled as networks (Liu,
Slotine, & Barabasi, 2011; Ruths & Ruths, 2014). While this body
of work has already been able to provide revealing insights that
connect network structures, such as the degree distribution, to
control properties, more realistic models of these systems would
permit deeper and more relevant analysis. In a network modeled
by linear control dynamics, input signals are applied exogenously
to specific nodes in the network, the influence of which is then
able to control the entire network. This mechanism of influencing a
network is applicable, for example, in resource networks (pipeline
networks, power grids, and supply chains) where volume is
injected or removed at nodes to manage demand, or food web
networks where species can be bred and released or culled to
achieve a population size (Dunne, Williams, & Martinez, 2002).

More often, however, this model falls short of how influence
is achieved in a network. In a road network, tolls can be
imposed on certain roads to alleviate traffic at specific points in
the network. Similarly, biochemical networks are typically not
controlled through direct injection of a protein, but instead by
administering a drug that effects the rate at which that protein is
produced naturally by the body (Marinissen & Gutkind, 2001).

A linear control model represents top-down control of a
network whereas a bilinear model represents incentive-driven
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control from within a network. Both schemes require global
oversight, since controls are generated centrally, however, the top-
down (linear) scheme effects the states of the system directly, and
the incentive-driven (bilinear) scheme effects the states indirectly
by throttling the natural interaction between two states.

In this work we study structural control of bilinear systems for
the purpose of applying these methods to networks with a bilinear
control structure. We cannot leverage the work by Boukhobza and
Hamelin (2007) on structural observability of bilinear systems,
however, because the nonlinearity of bilinear systems does
not enter the observability criterion, making controllability a
significantly harder problem. Because structural controllability
results rely on classic control results, we have built this work on
top of the most general algebraic bilinear controllability results,
which are known for a class of bilinear systems which have a
single control and such that the input matrix is rank one (Evans
& Murthy, 1977; Goka, Tarn, & Zaborszky, 1973). One of the major
contributions of this work is the collection of intuitive graphical
conditions which will be more easily generalized to a broader class
of bilinear systems. At the same time this class of systems is not
without direct application. Most systems employing regulatory
control schemes are driven by a single controlling source with a
broadcasting (rank one) structure of interaction. For example, the
Federal Reserve sets the national interest rate so as to achieve
market stability in the network of banks and loaning agencies
within the United States.

Most network systems are composed of similar agents (nodes),
and through their interaction the system evolves. Unlike engi-
neered systems, in which, for example, a pump and a valve in a
pipeline system are clear actuation points, these network systems
do not have pre-established points at which control should be ap-
plied. In the network setting we need to design the input con-
nectivity given the structured system so that the system and in-
put together are controllable, a relatively new type of problem we
call control configuration design. Methods for control configura-
tion design exist for linear structured systems and correspond to
selecting the (fewest) nodes in the network to receive exogenous
input (Murota, 2000). Control configuration design for bilinear sys-
tems is, to date, an open question and involves placing additional
(in particular, the fewest) edges with controlled edge weights such
that the overall system of fixed edges and controlled edges is con-
trollable. In the context of social networks, for example, this would
be equivalent to establishing, removing, strengthening, or weak-
ening interconnections of trust/mistrust among people so that the
opinion of the group as a whole can be influenced.

The contributions of this work are twofold: first, for discrete-
time single-input rank one bilinear systems we develop equivalent
algebraic and graph-theoretic results for checking structural
controllability, and second, we design an efficient algorithm for
control configuration design for this same class of bilinear systems.
Preliminary versions of these results were published in Ghosh and
Ruths (2014a,b).

2. Background

We consider single-input homogeneous (without a linear
control term) bilinear systems such that the input matrix is rank
one. The state equation of the system is given by

X(t + 1) = Ax(t) + u(t)Bx(t) (1)

where x(t) € R" denotes the state of the system and u(t) € R
denotes the control input to the system at time t € Np; A € R™"
and B € R"™" denote the state and input matrices, respectively.
Because we consider input matrices of rank one, the matrix B can

be written as B = ch” where ¢, h € R Thus, an alternate
description of the state equation is

x(t + 1) = Ax(t) + u(t)ch™x(t). (2)

Although select results exist for seemingly broader classes of
bilinear systems, namely for controllability of multi-input and
inhomogeneous systems, all of these results put highly restrictive
assumptions on the form of the system matrices and are thus less
general and interpretable (Evans & Murthy, 1978; Hollis & Murthy,
1981; Tie, Cai, & Lin, 2011). Even though the rank one condition on
B is restrictive, a number of important classes of systems satisfy
this requirement. One such example is the class of bilinear strict-
feedback systems which are a class of nonlinear strict feedback
systems (KKhalil, 2002). For example, a strict feedback system of
order 3 can be described by the following set of equations

x1(t + 1) = fi (1)) + y1x2(0),
X (t+ 1) = fr (x1(t), X2(£)) + y2x3(t),
x3(t + 1) = f3 (x1(t), X2(£), x3(t)) + g3 (X1 (), x2(t), x3(t)) u(t),

where the functions f;(-) (withi = 1, 2, 3) and g3(-) are linear in
their variables; y1, y» # 0.The overall state equation of the system
is then given by (1) where B has all rows, except the last one, as zero
rows. Another application of a single-input discrete-time rank-one
bilinear system can be found in the context of wavelength-division
multiplexing (Ishio, Minowa, & Noshu, 1984). The network consists
of three parts: a multiplexer (that works according to the sparsity
of h), an amplifier with gain u(t) and a demultiplexer (which works
according to the structure of c). Such networks appear the long-
haul transmission where the sensors and actuators are far from
each other and there is a bandwidth constraint of transmission and
reception of data.

2.1. Structured systems

The notion of structured systems was introduced so that system
properties could be evaluated and studied for systems that had a
particular structure, regardless of the exact parameter values.

Mathematically the structure of structured systems is captured
by matrix entries that are either fixed at zero (i.e., two states
are known to have no direct interaction) or allowed to vary
independently (i.e., the rate of the interaction between two states
is given by an independent parameter). Therefore, in the structured
version of (2) the structured matrices A, ¢, and h have entries that
are either identically zero (denoted simply as O) or free, able to take
on any real number (denoted by A; or simply by *). An example of
such a structured system is

0 A 0
x(t+1)=[A 6]no+mob][u As] x(0),
2 3 —
— fe— T
A c
where A; € Rfori € {1,...,5}is an independent parameter. We

study the properties of these systems in a generic sense; i.e., the
properties under consideration must hold for almost every choice
of these free parameters. We will define this notion in terms of
polynomials and algebraic varieties.

An algebraic variety is the zero set of a finite set of polynomials.
An algebraic variety V C RV is called a proper variety if V # RN
and nontrivial if V # . A proper variety is one of the standard
sets known to have Lebesgue measure zero (Polderman & Willems,
1998)

Definition 1. A property (e.g., controllability) is said to hold
generically for a structured system if the set of values of the free
parameters for which the property does not hold forms a proper
algebraic variety.
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