
Automatica 64 (2016) 44–53

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Design and implementation of distributed resource management for
time-sensitive applications✩

Georgios C. Chasparis a, Martina Maggio b, Enrico Bini b, Karl-Erik Årzén b

a Software Competence Center Hagenberg GmbH, Softwarepark 21, A-4232 Hagenberg, Austria
b Department of Automatic Control, Lund University, Sweden

a r t i c l e i n f o

Article history:
Received 4 June 2013
Received in revised form
15 April 2015
Accepted 21 August 2015
Available online 18 November 2015

Keywords:
Resource management
Distributed optimization
Real-time systems

a b s t r a c t

In this paper, we address distributed convergence to fair allocations of CPU resources for time-sensitive
applications. We propose a novel resource management framework where a centralized objective for
fair allocations is decomposed into a pair of performance-driven recursive processes for updating:
(a) the allocation of computing bandwidth to the applications (resource adaptation), executed by the
resourcemanager, and (b) the service level of each application (service-level adaptation), executed by each
application independently.We provide conditions underwhich the distributed recursive scheme exhibits
convergence to solutions of the centralized objective (i.e., fair allocations). Contrary to prior work on
centralized optimization schemes, the proposed framework exhibits adaptivity and robustness to changes
both in the number and nature of applications, while it assumes minimum information available to both
applications and the resource manager. We finally validate our framework with simulations using the
TrueTime toolbox in MATLAB/Simulink.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The current trend in embedded computing demands that the
number of applications sharing the same execution platform in-
creases. This is due to the increased capacity of the new hard-
ware platforms, e.g., through the use of multi-core techniques. An
example includes the move from federated to integrated system
architectures in the automotive industry (Di Natale & Sangiovanni-
Vincentelli, 2010).

In such scenarios, the need for better mechanisms for con-
trolling the rate of execution of each application becomes appar-
ent. To this end, virtualization or resource reservation techniques
(Abeni & Buttazzo, 1998;Mercer, Savage, & Tokuda, 1994) are used.

✩ The research leading to these results was supported by the Linnaeus
Center LCCC, the Swedish VR project no. 2011-3635 ‘‘Feedback-based resource
management for embedded multicore platform’’, and the Marie Curie Intra
European Fellowshipwithin the 7th European Community Framework Programme.
The material in this paper was partially presented at the 2013 American Control
Conference, June 17–19, 2013,Washington, DC, USA. This paper was recommended
for publication in revised form by Associate Editor Richard D. Braatz under the
direction of Editor Christos G. Cassandras. An earlier version of this paper appeared
in Chasparis et al. (2013) and its implementation framework appeared in Maggio
et al. (2013).

E-mail addresses: georgios.chasparis@scch.at (G.C. Chasparis),
martina.maggio@control.lth.se (M. Maggio), bini@control.lth.se (E. Bini),
karlerik@control.lth.se (K.-E. Årzén).

According to these techniques, each reservation is viewed as a vir-
tual processor (or platform) executing at a fraction of the speed of
the physical processor, i.e., the bandwidth of the reservation. An or-
thogonal dimension alongwhich the performance of an application
can be tuned is the selection of its service level. It is assumed that
an application is able to execute at different service levels, where
a higher service level implies a higher quality-of-service (QoS). Ex-
amples include the adjustable video resolutions and the adjustable
sampling rates of a controller.

Typically this problem is solved by using a resource manager
(RM), which is in charge of: (a) assigning virtual processors to the
applications, (b)monitoring the use of resources, and (c) assigning the
service level to each application. The goal of the RM is to maximize
the overall delivered QoS. This is often done through centralized
optimization and the use of feedback from the applications.

RM’s that are based on the concept of feedback, monitor the
progress of the applications and adjust the virtual platforms based
on measurements (Eker, Hagander, & Årzén, 2000; Steere et al.,
1999). In these early approaches, however, quality adjustmentwas
not considered. Instead, Ref. Cucinotta, Palopoli, Abeni, Faggioli,
and Lipari (2010) proposed an inner loop to control the resource
allocation nested within an outer loop that controls the overall de-
livered quality.

Optimization-based resource managers have also received
considerable attention (Lee, Lehoczky, Sieworek, Rajkumar, &
Hansen, 1999; Rajkumar, Lee, Lehoczky, & Siewiorek, 1997). These

http://dx.doi.org/10.1016/j.automatica.2015.09.015
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.09.015
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.09.015&domain=pdf
mailto:georgios.chasparis@scch.at
mailto:martina.maggio@control.lth.se
mailto:bini@control.lth.se
mailto:karlerik@control.lth.se
http://dx.doi.org/10.1016/j.automatica.2015.09.015

G.C. Chasparis et al. / Automatica 64 (2016) 44–53 45

approaches, however, rely on the solution of a centralized opti-
mization that determines both the amount of assigned resources
and the service levels of all applications (Bini et al., 2011; Rajku-
mar et al., 1997; Sojka et al., 2011). In the context of networking,
Ref. Johansson, Adam, Johansson, and Stadler (2006) models the
service provided by a set of servers to workloads belonging to dif-
ferent classes as a utility maximization problem. However, there is
no notion of adjustment of the service level of the applications.

An example of a combined use of optimization and feedback
was developed in the ACTORS project (Årzén Romero Segovia,
Schorr, & Fohler, 2011; Bini et al., 2011). In that project,
applications provide a table to the RM describing the required
amount of CPU resources and the expected QoS achieved at each
supported service level (Årzén et al., 2011; Bini et al., 2011). In the
multi-core case, applications are partitioned over the cores and the
amount of resources is given for each individual partition. Then,
the RM decides the service level of all applications and how the
partitions should bemapped to physical cores using a combination
of Integer Linear Programming (ILP) and first-fit-decrease (FFD) for
bin packing.

On-line centralized optimization schemes have several weak-
nesses. First, the complexity of the solvers used to implement the
RM (such as ILP solvers) grows significantly with the number of
applications. It is impractical to have a RM that optimally assigns
resources at the price of a large consumption of resources by the
RM itself. Second, to enable a meaningful formulation of a cost
function in such optimization problems, the RM must compare
the quality delivered by different applications. This comparison is
unnatural because the concept of quality is extremely application
dependent. Finally, a proper assignment of service levels requires
application knowledge. In particular, applications must inform the
RM about the available service levels and the expected consumed
resources at each service level, increasing significantly communi-
cation complexity.

To this end, distributed optimization schemes have recently at-
tracted considerable attention. Ref. Subrata, Zomaya, and Land-
feldt (2008) considered a cooperative game formulation for job
allocation to service providers in grid computing. Ref. Wei, Vasi-
lakos, Zheng, and Xiong (2010) proposed a non-cooperative game
formulation to allocate computational resources to a given num-
ber of tasks in cloud computing. Tasks have full knowledge of the
available resources and try to maximize their own utility function.
Similarly, in Grosu and Chronopoulos (2005) the load balancing
problem is formulated as a non-cooperative game.

Contrary to the grid computing setup of Subrata et al. (2008) or
the load balancing problem of Grosu and Chronopoulos (2005) and
Wei et al. (2010), this paper addresses a lower-level resource allo-
cation problem, that is, the establishment of fair allocations of CPU
bandwidth among time-sensitive applications which adjust their own
service levels. Contrary to the cloud computing setup of Wei et al.
(2010), a game-theoretic formulation may not easily be motivated
practically when addressing such lower-level (single node) re-
source allocation problems. Instead, we propose a distributed op-
timization scheme, according to which a centralized objective for
fair allocations is decomposed into a pair of performance-driven
recursive processes for updating: (a) the allocation of computing
bandwidth to the applications (resource adaptation), executed by
the RM, and (b) the service level of each application (service-level
adaptation), executed by each application independently. We pro-
vide conditions under which the distributed recursive scheme ex-
hibits convergence to fair allocations.

The proposed scheme introduces a design technique for allocat-
ing computing bandwidth to time-sensitive applications, i.e., appli-
cationswhose performance is subject to strict time deadlines, such
asmultimedia and control applications. In particular, the proposed

scheme: (a) exhibits linear complexitywith the number of applica-
tions, (b) drops the assumption that the RM has knowledge of ap-
plication details, and (c) exhibits adaptivity and robustness to the
number and nature of applications. This paper extends the theo-
retical contributions of Chasparis, Maggio, Årzén, and Bini (2013)
by addressing global convergence and asynchronous updates. Fur-
thermore, Ref. Maggio, Bini, Chasparis, and Årzén (2013) presents
the full implementation framework in Linux.

The paper is organized as follows. Section 2 provides the overall
framework, while Section 3 presents the distributed scheme for
resource allocation. Section 4 presents the convergence behavior
for the synchronous and asynchronous case. Section 5 presents
technical details required for the derivation of the main results
in Section 4. Section 6 provides selective simulations. Finally,
Section 7 presents concluding remarks.

Notation:

• Π[a,b] is the projection onto the set [a, b].
• For some finite sequence {x1, x2, . . . , xn} in R, define col{x1, x2,
. . . , xn} to be the column vector in Rn with entries {x1, x2,
. . . , xn}.
• For any x ∈ R, define the operator [x]− as follows:

[x]− ,


x, x ≤ 0
0, x > 0.

• For any x ∈ Rn and setA ⊂ Rn, define dist(x, A) .= infy∈A ∥x−y∥,
where ∥ · ∥ denotes the Euclidean norm.
• For some finite set A, |A| denotes the cardinality of A.

2. Framework and problem formulation

2.1. Resource manager and applications

The overall framework is illustrated in Fig. 1. A set I of n (time-
sensitive) applications is sharing the same CPU platform. Let i be a
representative element of this set. Since we allow applications to
dynamically join or leave, the number n may not be constant over
time.

The resources are managed by a RM that allocates resources
through a Constant Bandwidth Server (CBS) (Abeni & Buttazzo,
1998) with period Pi and budget Qi. Hence, application i is assigned
a virtual platform with bandwidth vi = Qi/Pi corresponding to
a fraction of the computing power (or speed) of a single CPU.
Obviously, not all virtual platforms vi are feasible, since their sum
cannot exceed the number κ of available CPU’s. Formally,we define
the set of feasible virtual platforms, (v1, . . . , vn), as

V
.
=


v = (v1, . . . , vn) ∈ [0, 1]n :

n
i=1

vi ≤ κ

. (1)

In this study, the main concern is the computation of the allo-
cation v in real time such that a centralized objective is achieved.
However, we will not be concerned with the exact mapping of
this allocation onto the available cores. Such mapping can be per-
formed by a standard first-fit-decrease algorithm. Furthermore, in
practice, more constraints might be present, especially if applica-
tions are single-threaded (i.e., they may only run on a single core).
In this case, the above feasibility constraint will be a relaxed ver-
sion of the original problem, however, the forthcoming analysis can
be modified in a straightforward manner to incorporate additional
constraints on V .

Each application i ∈ I may change its service level, si. It repre-
sents a qualitative indicator of the delivered quality of application i,
assuming sufficient amount of resources vi. Naturally, it can be rep-
resented by a real number si ∈ Si

.
= [si,∞) ⊂ R, where si > 0 is

the minimum possible service level of application i. The domain Si

Download English Version:

https://daneshyari.com/en/article/695308

Download Persian Version:

https://daneshyari.com/article/695308

Daneshyari.com

https://daneshyari.com/en/article/695308
https://daneshyari.com/article/695308
https://daneshyari.com

