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a b s t r a c t

This paper addresses the design problem of a stable parallel feedforward compensator V for a given SISO
LTI plant P (possibly being of non-minimum phase and/or having relative degree greater than one). The
objective of the problem is that their parallel interconnection P + V becomes minimum phase having
relative degree one. Based on the classical results of simultaneous stabilization, a necessary and sufficient
condition for solving the problem is presented as well as a design procedure for constructing such a
compensator. The proposed feedforward compensator allows the control system to have the three useful
features: (1) the ability that assigns the zeros of P + V to a region of complex numbers having arbitrary
negative real parts, (2) infinite gainmargin property of P+V controlled by a static output feedback, and (3)
block diagonal structure of P+V. These features are extensively exploited in the synchronization problem
ofmulti-agent systems to achieve arbitrary fast convergence rate and to have the synchronized trajectory
independent of the initial conditions and parameters of the involved dynamic controllers.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A class of systems being of minimum phase and having relative
degree one is frequently encountered, and is dealt with in depth
in the literature because it is closely related with passive systems
(Byrnes, Isidori, &Willems, 1991; Sepulchre, Janković, & Kokotović,
1997) and a system belonging to this class can be stabilized
through a simple static high-gain output feedback (Byrnes et al.,
1991; Isidori, 1995). Although the high-gain stabilization schemes
can be extended to systems having higher relative degree as long
as they remain as minimum phase (Teel & Praly, 1995), the output
feedback control of non-minimum phase systems still suffers from
its intrinsic limitations.
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A possible approach to overcome these difficulties is to find a
parallel feedforward compensator (PFC) V such that the parallel
interconnection P + V of the plant P and the compensator V,
shown in the shaded region of Fig. 1(a), has desired properties
(e.g., passivity, minimum phaseness, and/or relative degree 1)
when the signal y = yp + yv is viewed as a new output. (Therefore,
this idea belongs to the category of output redefinition methods.)
If this task is successfully done, then, relying on the obtained
properties of P + V, one may design an output feedback controller
Q for P + V to achieve the objectives of the original problem
with relative ease. These feedforward and feedback controllers are
actually implemented in a feedback form like in Fig. 1(b), i.e., V
becomes a part of a feedback controller.

In this direction, Bar-Kana (1987) has used a PFC to make
P + V almost strictly positive real (ASPR), which results in an
implementable simple adaptive controller (Sobel, Kaufman, &
Mabius, 1982) when the plant itself does not satisfy the positivity
condition. In particular, he showed in Bar-Kana (1986) that if P(s),
the transfer function of the systemP, can be stabilized by a biproper
output feedback controller V−1(s), then P(s)+V (s) becomes ASPR.
Following the approach and results of Bar-Kana (1986, 1987), a
robust design problem of such PFCs for uncertain plants has been
addressed in, e.g., Deng, Iwai, and Mizumoto (1999), Iwai and
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(a) Feedforward and feedback control. (b) An equivalent feedback implementation.

Fig. 1. Feedforward control scheme and its equivalent representation in feedback control.

Mizumoto (1992, 1994) and Iwai,Mizumoto, andDeng (1994)with
constructive design methods given. A common restriction of them
is P(s) has to be of minimum phase uniformly in the uncertainties.
Several passification methods of non-passive systems via suitable
compensation, including PFC, were also introduced by Kelkar and
Joshi (1997).

On the other hand, state space design approaches of PFC have
been reported in, e.g., Isidori and Marconi (2008), Misra and Patel
(1988), Patel and Misra (1992) and Son, Shim, Jo, and Seo (2003);
Son, Shim, Park, and Seo (2002). InMisra and Patel (1988) and Patel
and Misra (1992), the design methods of PFC V were provided in
order that P+V is of minimum phase and has relative degree zero.
Son et al. (2003, 2002) have considered the problem of designing
a PFC that achieves relative degree 1 and minimum phaseness of
the interconnected system. In particular, they showed the problem
is solvable if there exists a static output feedback controller that
stabilizes a certain system derived from the plant P. Requiring the
existence of a static stabilizer is a consequence of the PFC to be
input-dimensional (i.e., the dimension of the PFC is the same as
that of the plant input). In Isidori and Marconi (2008), the design
problem of a PFC for a class of nonlinear plants was addressed and
it was shown that the output feedback stabilization problem of a
nonlinear plant P is solved by means of the proposed PFC V and
the static high-gain output feedback of P + V. The PFC V in Isidori
and Marconi (2008) was constructed from the prior knowledge
of a controller that possesses a certain structural property and
stabilizes the auxiliary system (again derived from P).

However, while those references present different sufficient
conditions for the existence of the PFC, a complete necessary and
sufficient characterization and a systematic designmethod are still
lacking. Motivated by this fact, we study a necessary and sufficient
condition for the existence of stable PFC and its constructive
design procedure. It will be seen in Section 3 that, by imposing
the stability of PFC itself, the problem can be converted into
the classical simultaneous stabilization problem and therefore, a
few off-the-shelf design methods become applicable to the PFC
problem. The search for PFC within the stable systems could be a
restriction, but it also provides with some benefits. One particular
application, where the structure of P + V and stability of V play
important roles, is the synchronization problem dealt with in
Section 4. Synchronization problemhas its origin at the asymptotic
convergence of each first-order dynamic agent to their average
of initial conditions (Jadbabaie, Lin, & Morse, 2003; Ren, Beard, &
Atkins, 2007). It has been extended to higher order dynamic agents,
but instead some dynamic controller is introduced into each agent.
As a result, the synchronized trajectory is not purely an average of
each agent, but the initial conditions of the controllers now take
part in the average (see, e.g., Kim, Shim, Back, & Seo, 2013; Li,
Duan, & Chen, 2011; Li, Duan, Chen, & Huang, 2010; Scardovi &
Sepulchre, 2009 and Seo, Shim, & Back, 2009). On the other hand,
the proposed design of synchronizing controller overcomes this
drawback and the problem reverts into its original philosophy.
Moreover, the proposed design of PFC allows arbitrarily fast zero
assignment (that has not been addressed in the previous results,
e.g., Bar-Kana, 1986; Deng et al., 1999; Iwai &Mizumoto, 1994 and

Son et al., 2002), which in turn yields fast synchronizing rate to
the average. This feature also eliminates the intrinsic limitation of
Seo et al. (2009), in which the synchronizing rate is usually very
slow because of its low-gain based design. Finally, the PFC admits
infinite gainmargin property of P+V,2 which enables the design of
fully distributed synchronizing controllers (Li, Ren, Liu, & Fu, 2013;
Li, Ren, Liu, & Xie, 2013) that do not use the information on the
interconnection structure of network. We mention that the topics
covered in this paper have their origins inKim (2011) andKim, Kim,
Back, Shim, and Seo (2011) in part.

Notation. For a ∈ R, C≥a denotes the set of complex numbers
whose real parts are greater than or equal to a, namely, C≥a :=

{s ∈ C : Re(s) ≥ a}. In addition, R≥a := {s ∈ R : s ≥ a}
and R∞

≥a := R≥a ∪ {s = +∞}. The sets R>a, C<a, and C∞
≥a

are defined analogously. S<a denotes the set of proper rational
functions whose poles are all in C<a. A controller C(s) is said to
stabilize a plant P(s) (Vidyasagar, 1985) if the closed-loop system
H(P(s), C(s)) is stable in the sense that

H(P(s), C(s)) :=


1/∆(s) −P(s)/∆(s)

C(s)/∆(s) 1/∆(s)


∈ M(S<0),

where ∆(s) := 1 + P(s)C(s) and M(S<a) is the set of 2 × 2
matrices whose elements are in S<a. Two plants P0(s) and P1(s)
are simultaneously stabilizable if there is a common controller C(s)
that stabilizes both of the plants, i.e., H(Pi(s), C(s)) ∈ M(S<0) for
i = 0, 1. [x; y] stands for the stack of two vectors (or matrices
of compatible dimensions) x and y. The symbols ⊤ and ⊗ denote
transpose and Kronecker product, respectively.

2. Design problem of stable PFC

Consider a SISO LTI plant P given by

P :


ṗ = App + Bpu, p ∈ Rn, u ∈ R,
yp = Cpp, yp ∈ R,

(1)

where (Ap, Bp, Cp) is minimal, i.e., controllable and observable.
In this paper, whenever we call a ‘stable parallel feedforward

compensator (PFC)’, we mean a dynamical system of the form

V :


v̇ = Avv + Bvu, v ∈ Rm,
yv = Cvv, yv ∈ R (2)

such that the parallel interconnection P + V (see Fig. 1)

ẋ = Ax + Bu :=


Ap 0
0 Av


x +


Bp

Bv


u,

y = Cx :=

Cp Cv


x

(3)

2 By ‘‘infinite gainmargin property of P+V’’, wemean P+V controlled by a static
output feedback ±u = −ky remains stable for any k > k⋆ and some k⋆ > 0. (The
sign in front of u depends on the context.)
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