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a b s t r a c t

We derive an algorithm that computes the state difference equations for a given set of poles of linear
discrete overdetermined autonomous mD systems. These difference equations allow the realization of
the dynamical system by means of delay, multiplication and addition elements in simulation diagrams.
In doing so we generalize the classical Cayley–Hamilton theorem to multivariate polynomial ideals
and provide a system theoretic interpretation to the notion of polynomial ideals, leading monomials
and Gröbner bases. Furthermore, we extend the problem to include poles at infinity and so arrive at
a description of overdetermined descriptor systems. This results in a new state space description of
autonomous mD descriptor systems. In addition, we discuss the separation of the state variables of
singular mD systems into a regular and singular part. A sufficient condition under which these two state
vector parts can be interpreted as a forward evolving regular part and a backward evolving singular
part is given. The robustness and efficiency of the developed algorithms are demonstrated via numerical
experiments.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There has been an increasing interest in multi-dimensional
(mD) systems in the systems and control community over the
past decades (Attasi, 1973; Bleylevens, Peeters, & Hanzon, 2005,
2007; Dreesen, 2013; Fornasini & Marchesini, 1976; Hazewinkel
& Hanzon, 2006; Roesser, 1975). Different formulations of mD
systems were given (Attasi, 1973; Fornasini & Marchesini, 1976;
Kaczorek, 1988; Kurek, 1985; Roesser, 1975) and concepts such
as realization, stability, reachability and observability have been
thoroughly analysed. In the 1D case, the poles of the system
determine the state recursion equation. This fact is used for the
design of linear filters or for the stabilization of the linear system
by state feedback (the pole placement problem). In this article
we extend the theory on how to determine the state difference
equations for a given set of poles to the following class of discrete
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overdeterminedmultiple input-multiple output (MIMO)mD linear
systems

x(t1 + 1, . . . , tm) = A1x(t) + B1u(t),
...

x(t1, . . . , tm + 1) = Amx(t) + Bmu(t),
y(t) = C x(t) + Du(t), (1)

where we introduce the shorthand notation t , (t1, . . . , tm) and
x(t) ∈ Rn, u(t) ∈ Rp and y(t) ∈ Rl. The matrices A1, . . . , Am,
B1, . . . , Bm, C,D have the appropriate dimensions. Note how the
updating of the whole state x(t) is described by a separate
state equation for each independent direction t1, . . . , tm. It is
for this reason that (1) are called overdetermined mD systems.
Continuous overdetermined systems are characterized by having
partial derivatives of the state with respect to t1, . . . , tm on the
left hand side. These systems were originally studied in the field
of operator theory (Livšic, Kravitsky, Markus, & Vinnikov, 1995;
Rosenthal & Gilliam, 2003). More recently, the pole placement
problem for state feedback of overdetermined continuous 2D
systems was fully solved (Shaul & Vinnikov, 2009). Discrete
overdetermined systems as described by (1) have only been
studied in recent years (Bleylevens et al., 2005, 2007; Dreesen,
2013; Hazewinkel & Hanzon, 2006). They have found direct
applications in model order reduction (Bleylevens et al., 2005) and
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polynomial optimization (Bleylevens et al., 2007). Furthermore,
the relations between autonomous overdetermined mD systems,
solving multivariate polynomial systems, Gröbner bases and
systems theory are discussed in Dreesen (2013) and Hazewinkel
and Hanzon (2006).

Other commonly used mD state space models are the Roesser
model (Roesser, 1975) and the Fornasini–Marchesini model
(Fornasini & Marchesini, 1976). It is important to observe that the
state space system (1) is quite different from the Roesser model
in that the state vector x(t) is not divided into different partial
state vectors along each dimension. It is also not required to have
an infinite amount of initial states in order to compute the state
recursion. In fact we will show that, just like in the 1D case,
the system order n denotes the total number of previous states
required in the state difference equations in order to compute
the next state. It is possible for the 2D case to write (1) in
terms of the general model of Kurek (1985), which generalizes
the Roesser, Fornasini–Marchesini and Attasi models. Indeed, the
general model is

x(t1 + 1, t2 + 1) = G0 x(t1, t2) + G1 x(t1, t2 + 1)
+G2x(t1 + 1, t2) + H0u(t1, t2)
+H1u(t1, t2 + 1) + H2u(t1 + 1, t2),

which is equivalent with (1) if G0 = A1A2 = A2A1, H0 = (A1B2 +

A2B1)/2, G1 = G2 = 0 and H1 = B1/2, H2 = B2/2 are satisfied.
However, the general model of Kurek (1985) still needs an infinite
amount of initial states in order to compute all future states. Note
that the Ai matrices also commute for the Attasi models (Attasi,
1973).

The main contribution of this article is the derivation and
implementation of a numerical algorithm that solves the following
problem:

Problem 1. Given the finite set of poles Z of (1), find a minimal
set of difference equations G = {g1, . . . , gk} that allow us
to recursively compute all future states of the corresponding
autonomous mD system through monomial shifts zt11 · · · ztmm of
g1, . . . , gk.

Consequently, these future states completely determine the
free response (u(t) ≡ 0∀ t1, . . . , tm ≥ 0) of the overdetermined
mD system (1). Problem 1 is trivially solved for the 1D case. Indeed,
the uniquemonic characteristic polynomial g1(z1) of A1 in the shift
operator z1 is (z1 − λ1) · · · (z1 − λn) = zn1 + cn−1zn−1

1 + · · · + c0.
The Cayley–Hamilton theorem allows us to write

g1(A1) = An
1 + cn−1An−1

1 + · · · + c0In = 0,

which can be post-multiplied with x(0) to obtain

g1 = x(n) + cn−1x(n − 1) + · · · + c0x(0) = 0, (2)

since x(t) = At
1x(0) for an autonomous system. The linear relation

(2) can be interpreted as a way to compute x(n) from the known
states x(n − 1), . . . , x(0) without needing to make an explicit
choice of a basis. Consequently, all future states x(t) (t > n)
are found from multiplying (2) with powers of z1 (or A1). Indeed,
x(n + 1) can be computed from multiplying (2) with z1, x(n + 2)
from multiplying (2) with z21 and so forth. In other words, the
set of all polynomials in z1 from which all future states x(t) can
be computed form a polynomial ideal ⟨p(z1)⟩. Generalizing this
result to the mD case (m > 1) is less trivial. We will show
that for the mD case the characteristic polynomial of A1 needs to
be replaced by a Gröbner basis. Essentially, solving this problem
is equivalent with computing a Gröbner basis that vanishes on
the given set of poles Z. The first symbolical algorithm that
solves this problem was developed by Möller and Buchberger
Möller and Buchberger (1982). A numerical implementation of the

affine Buchberger–Möller algorithm is described in Heldt, Kreuzer,
Pokutta, and Poulisse (2009). Their numerical implementation
uses both the singular value decomposition (SVD) and Gaussian
Elimination (GE). Wewill derive our own version of both the affine
and projective Buchberger–Möller algorithm, using only the SVD,
from a system theoretic point of view.

Once a Gröbner basis g1 . . . , gk is found that vanishes on the
given set of poles Z, we then have a set of polynomials that
generate the polynomial ideal ⟨g1, . . . , gk⟩ of state difference
polynomials. The generalization of the Cayley–Hamilton theorem
then states that the Ai matrices of the mD system (1) satisfy all
polynomial equations p(A1, . . . , Am) = 0 with p ∈ ⟨g1, . . . , gk⟩.
Many generalizations of the Cayley–Hamilton theorem have
appeared (Kaczorek, 2005; Kurek, 1985; Theodorou, 1989), but
none from the point of view of Gröbner bases and systems theory.
More theory on Gröbner bases and their application in systems
theory can be found in Bose (2010) and Buchberger (2001). Poles
at infinity of linear systems have been extensively studied and it
is commonly known that poles at infinity are intimately linked
with the notion of singular or descriptor systems (Kaczorek, 1988;
Luenberger, 1978; Misra, Van Dooren, & Syrmos, 1995). These
notions will also be generalized here to the mD case, leading to a
new state space description of singular mD systems in terms of a
homogenization variable t0.

The inverse problem of Problem 1 has received more attention
in the literature. It is the realization problem of finding a set of Ai
matrices from a given set of difference equations (Fornasini, Rocha,
& Zampieri, 1993) or mD data trajectories (Zerz, 2008), which
have both been solved in the behavioural context. An alternative
realization method that does not rely on the behavioural context,
nor on the computation of a Gröbner basis, is a generalization of
the Ho–Kalman realization algorithm (Ho & Kalman, 1966) to the
mD case (Dreesen, 2013). This problem is trivially solved when the
poles Z are given. Indeed, one can then construct the Ai matrices
in their diagonal or upper triangular form using the method
described in Batselier, Dreesen, and De Moor (2014). The problem
solved in this article is precisely the inverse of the aforementioned
realization problem: from a given set of poles Z, find the minimal
set of state difference equations. These state difference equations
can then be easily realized with delay, multiplication and addition
elements into a simulation diagram.

This article is organized as follows. In Section 2 we establish
the notation and define some required concepts from algebraic
geometry in the context of systems theory. In Section 3 we
define regular systems and derive the algorithm to compute
all state difference polynomials from a given set of poles. The
conceptual changes necessary to extend the algorithm to work
for singular systems are discussed in Section 4. The application
of the algorithms for both regular as for singular systems are
demonstrated in Section 5. All algorithms are implemented in
MATLABandOctave and are freely available at https://github.com/
kbatseli/PNLA_MATLAB_OCTAVE.

2. Preliminaries

2.1. State orderings

All signals and state vectors are indexed by m independent
variables t1, . . . , tm. Hence, in order to be able to define a state
sequence, one needs to introduce a total ordering on the m-tuples
t ∈ Nm

0 . For notational convenience, we introduce the shorthand
notation x(0) for the initial state x(0, . . . , 0). Then, by introducing
them linear shift operators z1, . . . , zm such that

zk x(t) = x(t1, . . . , tk + 1, . . . , tm) (1 ≤ k ≤ m),

https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE


Download English Version:

https://daneshyari.com/en/article/695314

Download Persian Version:

https://daneshyari.com/article/695314

Daneshyari.com

https://daneshyari.com/en/article/695314
https://daneshyari.com/article/695314
https://daneshyari.com

