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a b s t r a c t

A new slidingmode control approach is introduced in this work with the dedicatedmathematical tools. A
time-delay modification/approximation of sign function is proposed, and it is shown that by substituting
this new ‘‘sign’’ realization in the conventional slidingmode algorithms themain advantages of the sliding
mode tools are preserved (like rejection ofmatched disturbances and hyper-exponential convergence, i.e.
the rate of convergence to the origin ismuch faster than any exponential (Polyakov, Efimov, Perruquetti, &
Richard, 2014)), while the chattering is reduced. These results are illustrated and confirmed by numerical
simulations for the first order sliding mode control and the super-twisting algorithm.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The sliding mode control and estimation algorithms became
very popular nowadays due to their strong advantages: finite time
of convergence and compensation ofmatched disturbances (Boiko,
2009; Fridman, 2011; Perruquetti & Barbot, 2002). Despite of that
the sliding mode solutions have also several drawbacks mainly
originated by the impossibility of a perfect practical realization of
sliding motion. Among these shortages it is necessary to mention
the chattering phenomenon, which is a high frequency oscillation
of control signal when trajectories stay around the sliding surface.
The appearance of chattering may physically destroy actuator
and/or degrade the performance of transients (Levant, 2010; Utkin,
1992). There are several approaches for chattering reduction
(Fridman, 2011). One of themost popular deals with the high order
slidingmode algorithms (Edwards & Shtessel, 2014; Levant, 1993),
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where the discontinuity, for example

sign[y(t)] =


y(t)
|y(t)|

, y(t) ≠ 0

0, y(t) = 0,

with y(t) ∈ R and | · | is the absolute value, appears not in the
control/estimated variable itself but in its derivative of higher or-
der (Fridman, 2011; Perruquetti & Barbot, 2002). However, since
a discontinuity is present in the system closed loop, it may nega-
tively influence the transients through the corresponding deriva-
tive (if this derivative has a physicalmeaning in the system). That is
why frequently for practical realization of slidingmode algorithms
different approximations of sign functions are used (Ambrosino,
Celentano, & Garofalo, 1985; Burton & Zinober, 1986), like for in-
stance

ˆsign[y(t)] =
y(t)

ϵ + |y(t)|
with some sufficiently small ϵ > 0, or see also Canudas-de Wit
and Perruquetti (2002) for interesting general sigmoid and dy-
namic approximations. Such a control based on approximated sign
functions received the name of ‘‘continuous’’ sliding mode (Khalil,
2002; Oza, Orlov, Spurgeon, Aoustin, & Chevallereau, 2014; Sht-
essel, Shkolnikov, & Brown, 2003). The main drawback of exis-
tent approximations is that a chattering reduction is achieved by
a price of quality loss (appearance of static error in the pres-
ence ofmatched disturbances and, consequently, practical stability
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with an exponential rate of convergence Ambrosino et al., 1985,
Esfandiari & Khalil, 1991). In the present work a development of
the sliding mode control is presented that is based on a sign ap-
proximation using the time-delay framework, which guarantees
the quality preservation (there is no static error in the presence
of a matched disturbance and locally the speed of convergence is
faster than any exponential).

Usually appearance of a delay in the system leads to perfor-
mance degradation and complication of stability analysis. How-
ever in this work we are going to introduce delay in a proper
way into the system, in order to make a modification of the sign
function, proving certain performance in the system. The obtained
approximation is very simple and can be easily implemented in
control/estimation systems based on the sliding mode algorithms:

signτ (yt) =
y(t)

max{|y(t)|, |y(t − τ)|}
,

where yt ∈ C[−τ ,0], y(t) ∈ R is a variable whose sign has to be
evaluated at time instant t ∈ R and τ > 0 is a fixed delay (design
parameter). Obviously,

sign0(yt) = sign[y(t)].

In this work the new delayed sliding mode control framework will
be substantiated, it is based on such an approximation and admits
the following advantages:

• exact cancellation ofmatched disturbances is preserved despite
of approximation;

• the control algorithms demonstrate hyper-exponential conver-
gence to the origin;

• chattering reduction with respect to conventional sliding mode
control.

The idea of chattering reduction, roughly speaking, is based on the
fact that

{φ ∈ C[−τ ,0] : signτ (φ) = 0} ⊂ {φ ∈ C[−τ ,0] : sign[φ(0)] = 0}.

The outline of this work is as follows. The preliminary defini-
tions for time-delay systems are given in Section 2. Themotivating
example of the first order sliding mode control algorithm is con-
sidered in Section 3. An extension to high order sliding mode algo-
rithms is presented in Section 4. Several examples are considered
for illustration of the obtained results.

2. Preliminaries

Consider a functional differential equation of retarded type
(Kolmanovsky & Nosov, 1986):

dx(t)/dt = f (xt , d(t)), t ≥ 0, (1)

where x(t) ∈ Rn and xt ∈ C[−τ ,0] is the state function, xt(s) =

x(t + s), − τ ≤ s ≤ 0 (we denote by C[−τ ,0], 0 < τ < +∞ the
Banach space of continuous functions φ : [−τ , 0] → Rn with the
uniform norm ∥φ∥ = sup−τ≤ς≤0 |φ(ς)|, where | · | is the standard
Euclidean norm); d(t) ∈ Rm is an essentially bounded measurable
input, i.e. ∥d∥∞ = ess supt≥0 |d(t)| < +∞; f : C[−τ ,0] × Rm

→ Rn

is a locally bounded functional, f (0, 0) = 0 where 0(s) = 0 for
all −τ ≤ s ≤ 0. The representation (1) includes pointwise or
distributed time-delay systems. We consider the system (1) with
the initial functional condition x0 ∈ C[−τ ,0].

A continuous function σ : R+ → R+ belongs to class K if it is
strictly increasing and σ (0) = 0; it belongs to class K∞ if it is also
unbounded. A continuous function β : R+ × R+ → R+ belongs
to class KL if β(·, r) ∈ K and β(r, ·) is decreasing to zero for any
fixed r ∈ R+.

2.1. Discontinuous functional differential equations

The dynamical systems subjected by a time-delay, whose mod-
els are described by functional differential equations, find their
applications in different areas of science and technology (Chias-
son & Loiseau, 2007). Analysis of delay influence on the system
stability is critical for many natural and human-developed sys-
tems (Gu, Kharitonov, & Chen, 2003; Kolmanovsky & Nosov, 1986;
Richard, 2003). The problemof stability investigation in time-delay
systems is much more complicated than for ordinary differential
equations since design of a Lyapunov–Krasovskii functional or a
Lyapunov–Razumikhin function is a complex issue.

It is known from the theory of functional differential equa-
tions (Kolmanovsky & Nosov, 1986) that under the above as-
sumptions the system (1) with a locally Lipschitz f has a unique
solution x(t, x0, d) satisfying the initial condition x0 for the input
d(t), which is defined on some finite time interval [−τ , T ) (wewill
use the notation x(t) to reference x(t, x0, d) if the origin of x0 and d
is clear from the context). If function f (φ, d) ≡ f0(φ(0), φ(−τ), d),
where f0 : R2n+m

→ Rn, and it is discontinuous with respect to
φ(0) on a set N ⊂ Rn of measure zero only and continuous with
respect to φ(−τ) and d, following Filipov (1988) and Heemels and
Weiland (2008) (see also Kolmanovskii & Myshkis, 1999, Surkov,
2008 for a general definition and existence conditions of solutions
for discontinuous functional differential equations) we will con-
sider itsmulti-valued extension (define Bε(x) = {y ∈ Rn

: |x−y| ≤

ε} as a closed ball of radius ε > 0 around x ∈ Rn):

F(φ, d) =


ε>0

conv[f0{Bε(φ(0)) \ N , φ(−τ), d}],

which is non-empty, compact, convex and upper semi-continuous
(Heemels &Weiland, 2008) for any d ∈ Rm. In particular, themulti-
valued extension of signτ (yt) can be defined as follows:

signτ (yt) =


[−1, 1], y(t) = y(t − τ) = 0

y(t)
max{|y(t)|, |y(t − τ)|}

, otherwise.

In this case, instead of (1), the solutions of the following functional
differential inclusion will be considered:

dx(t)/dt ∈ F(xt , d(t)), t ≥ 0, (2)

and for any initial condition x0 ∈ C[−τ ,0] the set of corresponding
solutions of (2) initiated at x0 for the input d can be denoted as
S(x0, d).

Remark 1. Considering solutions of the system (1) for f (φ, d) ≡

f0(φ(0), φ(−τ), d) on the interval [0, τ ]we can derive the Filippov
differential inclusion for f̃ 0[t, x(t), d(t)] = f0[x(t), x0(t − τ), d(t)]
on the right-hand side. The obtained inclusion satisfies all condi-
tions of existence theorem (Filipov, 1988) implying existence of a
solution locally. Having the solution defined on [0, τ ] we can re-
peat the same considerations for t ∈ [τ , 2τ ], etc. This method of
steps allows solutions of (2) to be defined for t > 0.

For a locally Lipschitz continuous function V : Rn
→ R+ (where

R+ = {s ∈ R : s ≥ 0}) let us introduce the upper directional Dini
derivative along the trajectories of (2):

D+

F(xt ,d)V [xt(0)] = sup
v∈F(xt ,d)

limsup
h→0+

V [xt(0) + hv] − V [xt(0)]
h

.
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