Accepted Manuscript

Adaptive neural tracking control for a class of uncertain nonstrict-feedback nonlinear systems

Qiang Yu, Xinyong Wang, Guangdeng Zong, Xudong Zhao

PII: \$0016-0032(17)30373-3

DOI: 10.1016/j.jfranklin.2017.07.044

Reference: FI 3083

To appear in: Journal of the Franklin Institute

Received date: 28 March 2017 Revised date: 28 June 2017 Accepted date: 30 July 2017

Please cite this article as: Qiang Yu, Xinyong Wang, Guangdeng Zong, Xudong Zhao, Adaptive neural tracking control for a class of uncertain nonstrict-feedback nonlinear systems, *Journal of the Franklin Institute* (2017), doi: 10.1016/j.jfranklin.2017.07.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Adaptive neural tracking control for a class of uncertain nonstrict-feedback nonlinear systems

Qiang Yu^a, Xinyong Wang^b, Guangdeng Zong^c, Xudong Zhao^{*b}

^a School of Mathematics and Computer Science, Shanxi Normal University, Linfen, 041004, China.

^b College of Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
^c School of Engineering, Qufu Normal University, Rizhao 276826, China.

Abstract

This paper investigates adaptive neural tracking control problem for nonstrict-feedback nonlinear systems with completely unknown uncertainties. Superior to the existing results that only bounded error tracking performance can be achieved, the designed controllers of this paper will guarantee the asymptotic tracking performance under the neural network approximation framework. This is accomplished by using a new control strategy where a proportional-integral (PI) compensator that can be conveniently implemented in practice is introduced. Meanwhile, a novel Lyapunov function is developed, whose upper-right Dini derivative will be used to construct the desired controllers and adaptive laws. Finally, simulation results are given to show the advantages and effectiveness of the proposed new design technique over some existing ones.

Keywords: Neural network, completely unknown uncertainty, PI compensator, backstepping.

1. Introduction

In practice, many systems are commonly encountered with uncertainties due to unavoidable parameter variation, disturbance input and component failure, etc. As a very powerful control method of dealing with uncertainties, the adaptive control has been paid much attention for both linear and nonlinear systems over the a past few years, and many significant progresses have been made, see, eg., [1, 2, 3, 4, 5, 6] and the references therein.

In the nonlinear context, a systematic design procedure of adaptive regulation and tracking schemes for a class of feedback linearizable nonlinear systems was developed in [7]. On the other hand, nonlinearities can also be dealt

Corresponding Author: Xudong Zhao* (email address: xdzhaohit@gmail.com)

 $^{^{\}circ}$ This work was partially supported by the National Natural Science Foundation of China (61573069, 61722302), the Liaoning provincial Natural Science Foundation, China (201602124), the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(2017149).

Download English Version:

https://daneshyari.com/en/article/6953205

Download Persian Version:

https://daneshyari.com/article/6953205

Daneshyari.com