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We consider nonlinear differential systems with state-dependent delayed impulses (impulses which
involve the delayed state of the system for which the delay is state-dependent). Such systems arise
naturally from a number of applications and the stability issue is complex due to the state-dependence of
the delay. We establish general and applicable results for uniform stability, uniform asymptotic stability
and exponential stability of the systems by using the impulsive control theory and some comparison
arguments. We show how restrictions on the change rates of states and impulses should be imposed
to achieve system’s stability, in comparison with general impulsive delay differential systems with state-
dependent delay in the nonlinearity, or the differential systems with constant delays. In our approach, the
boundedness of the state-dependent delay is not required but derives from the stability result obtained.
Examples are given to demonstrate the sharpness and applicability of our general results and the proposed

LMI approach.
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1. Introduction

Impulsive delay differential systems have been used for mod-
elling natural phenomena in many areas for many years, and
there have been significant studies of such systems, as indi-
cated by Churilov and Medvedev (2014), Dashkovskiy, Kosmykov,
Mironchenko, and Naujok (2012), Lakshmikantham, Bainov, and
Simeonov (1989), Li, Bohner, and Wang (2015), Sakthivel, Mah-
mudov, and Kim (2009), Sakthivel, Ren, and Mahmudov (2010)
and Samoilenko and Perestyuk (1995) and references therein. Of
current interest is the delayed impulses of differential systems
arising in such applications as automatic control, secure commu-
nication and population dynamics (Akca, Alassar, Covachev, Cov-
acheva, & Al-Zahrani, 2004; Akhmet & Yilmaz, 2014; Chen, Wei,
& Lu, 2013; Chen & Zheng, 2011, 2009; Khadra, Liu, & Shen, 2005,
2009; Liu, Teo, & Xu, 2005), here and in what follows, a delayed
impulse describes a phenomenon where impulsive transients de-
pend on not only their current but also historical states of the sys-
tem. For instance, in communication security systems based on
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impulsive synchronization, there exist transmission and sampling
delays during the information transmission process, where the
sampling delay created from sampling the impulses at some dis-
crete instances causes the impulsive transients depend on their
historical states (Chen et al., 2013; Khadra et al., 2005). The existing
studies, however, such as those in Akca et al. (2004), Akhmet and
Yilmaz (2014), Chen et al. (2013), Chen and Zheng (2011, 2009),
Khadra et al. (2005, 2009) and Liu et al. (2005), assume the de-
lays in impulsive perturbations are either fixed as constants or
given by integrals with state-independent distributed kernels. For
example, Khadra et al. (2005) considered the impulsive synchro-
nization of chaotic systems with transmission delay and sampling
delay, and then applied the results to the design of communica-
tion security scheme. Chen and Zheng (2011) studied the nonlin-
ear time-delay systems with two kinds of delayed impulses, that
is, destabilizing delayed impulses and stabilizing delayed impulses,
and derived some interesting results for exponential stability. But
in both results, the delays in impulses are given constants. Akca
et al. (2004) derived some results for global stability of Hopfield-
type neural networks with delayed impulses, where the delays in
impulses are in integral forms with state-independent distributed
kernels. However, in many cases it is important to consider state-
dependent delays in impulsive perturbations. For example, the
sampling delay varies with the change of state variables since it
is natural to consider sending control signals less frequently when
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the state is small and more frequently when the state is large (Hes-
panha, Naghshtabrizi, & Xu, 2007); while in some other impulsive
models arising from disease control, financial options, and pop-
ulation dynamics, it is also natural to introduce state-dependent
delays into the impulses. There have already been some results
in the literature on the existence, uniqueness and controllability
for some classes of differential systems with impulses involving
state-dependent delay (see Chang, Nieto, & Zhao, 2010, Hernandez,
Sakthivel, & Aki, 2008, Liu & Ballinger, 2001, Sakthivel & Anandhi,
2010), but little seems to have been done for the stability.

We should have mentioned that state-dependent delay
incorporated in the differential system has also found increasing
applications in a variety of fields, such as control systems (Hes-
panha et al., 2007; Liberis & Krstic, 2013b; Niemeyer & Slotine,
2001), turning processes (Insperger, Stepan, & Turi, 2007), com-
plex networks (Sterman, 2000; Witrant, Carlos, Georges, & Alamir,
2007), and biological systems (Adimy, Crauste, Hbid, & Qesmi,
2010; Aiello, Freedman, & Wu, 1992). Many interesting and impor-
tant results for state-dependent delay systems have been recently
reported (see Ecimovic & Wu, 2002, Hartung, Krisztin, Walther,
& Wu, 2006, Paret & Nussbaum, 2011, Sakthivel & Ren, 2013,
Walther, 2008 and references therein) including stability analy-
sis (Cooke & Huang, 1996; Gyori & Hartung, 2007; Hartung & Turi,
1995; Liberis & Krstic, 2013a; Verriest, 2002). However, many clas-
sical methods for stability analysis of delay systems, including de-
lay decomposition approach, free-weighting matrix method, and
Leibniz-Newton formula have not been extended to differential
systems with state-dependent delay in general, and differential
systems with state-dependent delayed impulses in particular.

In this study, we focus on stability problem of nonlinear dif-
ferential systems with impulses involving state-dependent delay
based on Lyapunov methods. As is well known, in systems with
time delays, there exist two main Lyapunov methods for stabil-
ity analysis: the Krasovskii method of Lyapunov functionals and
the Razumikhin method of Lyapunov functions. However, when
the time delays exist in impulses and moreover is state-dependent,
there are substantial difficulties to apply either method. In fact, due
to the existence of state delay in impulses, it is hard to know exactly
a priori how far in the history the information is needed, and is hard
to determine the historical states at impulsive instances. Moreover,
it is possible that function V along a solution can be increasing at
certain impulses points due to the state-dependence of the delay.
In this study, we provide some new insights on the features of sys-
tems with impulses involving state-dependent delay, and give an
estimate of Lyapunov functions which is coupled with the effect
of state delay based on impulsive control theory and some com-
parison arguments. Then we establish (in Section 3) some gen-
eral results for (Lyapunov) uniform stability, uniform asymptotic
stability and exponential stability, where the necessary constraint
on state-dependent delay is specified of boundedness of the state-
dependent delay is not required a priori. We will also provide, in
Section 4, numerical examples to demonstrate the effectiveness of
the proposed approach and our established results.

2. Preliminaries

Notations. Let R denote the set of real numbers, R" and R™™
the n-dimensional and n x m-dimensional real spaces equipped
with the Euclidean norm || - ||, respectively, Z. the set of positive
integer numbers, Amax (A) and A (A) the maximum and minimum
eigenvalues of symmetric matrix A, respectively. A > OorA < 0
denotes that the matrix A is a symmetric and positive or negative
definite matrix. I the identity matrix with appropriate dimensions.
# = {a € CRy,Ry)| a(0) = Oanda(s) > Ofors >
0 and a is increasing in s}.

Consider the following impulsive differential system

x(t) = f (¢, x(t)),
x(ty) = Ik(t, — 7, x(t, — 1)),
th = ¢7

where ¢ € C,, f € CRy x R, R"), I, € C(R x R",R"), k €
Zy, T € CRy xR [0, a]), Xy = {x(to+5) : s € [—, 0]}, 0 <
o < +o0o, especially when @« = o0, the interval [s — «, 5] is
understood to be replaced by (—oo,s] forany s € R. C, =
C([—a,0],R") = {¢ : [—a,0] — R"iscontinuous} with the
norm |[@lle = SUP_y<p<o PO for ¢ € C,. Given a constant
M > 0,5et CH = {¢p € Cq : 0 < ||@¢]| < M}. The impulse times t;
satisfy0 <ty <t; <--- <ty > +ooask — oo.

Note that the continuity of f, I, and 7, and a fact that system
(1) is an ODE which is continuous on each interval [t;_q, t;). We
assume that the vector field f satisfies suitable conditions so the so-
lutions exist in relevant time intervals. These conditions can be for-
mulated using standard conditions such as conditions (H;)-(Hs) in
Liu and Ballinger (2001) (or Lakshmikantham et al., 1989). Denote
by x(t) = x(t, to, ¢) the solution of the system (1). In addition, we
always assume that f(t, 0) = 0, t > tp, and [ (t, x) = 0 if and only
ifx=20, t > ty, k € Z,. Thus system (1) admits a trivial solution
x(t) = 0. Some definitions are given in the following.

t>1t >0, t#t,
T = 1(ty, x(t; ), (1)

Definition 1. The function V : [t) — «, 00) X R" — R, belongs to
class vy if

(1) V is continuous on each of the sets [ty_1,t;) x R" and
lim(t,u>_>([,;,u) V(t,u) =V(t,,v) exists;
(2) V(t, x) is locally Lipschitzian in x and V(t, 0) = 0.

Definition 2. Let V € vy, DTV is defined as

. 1
DTV (t, x(t)) = limsup A {V(t + h, x(t)

h—07t

FhE(E, x(£)) — V(L x(t))}.

Definition 3. System (1) is said to be

(1) locally uniformly stable (LUS) in the region ¢ € (C;f{, if there
exists a constant M > 0, and if for any to > 0 and ¢ > 0, there
exists some § = 8(e, M) € (0, M] such that ¢ € Cg implies
|X(t7 to, ¢)| <eé&, t=to;

(2) locally uniformly asymptotically stable (LUAS) in the region
[ORS (C;ff, if it is uniformly stable and uniformly attractive;

(3) locally exponentially stable (LES) in the region ¢ € (Ci‘, if there
exist constants A > 0, M* > 1, M > 0 such that

@)1 < M*[[plle e,

for any initial value ¢ € CJ.

t > to,

3. Main results

Theorem 1. Assume that there exist constants y > 0, 6 €
0,1, M > 0, pp > 1, k € Z, functions w1, w, € #, H €
C(Ry xRy, Ry), and V € vg such that

(1) er(llxll) < V(t, %) < wx(lIx]]) for all (¢, x) € [to—oa, 00) X R";
(i) V(e x(0) = —H(£, V(e X)), € € [t 0
(iii) V(t, x(t)) < pV(t, — T, x(8, — 1)), T =T(lK, X(t ), k €
Z.., where x(t) = x(t, to, ¢) is a solution of (1);

(iv) |z(s,w) — (s, 0)| < y|lu| foranys € Ry, u € R%;
(V) T% = sup;y, T(t, 0) < 00;
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