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a b s t r a c t

This paper investigates the distributed finite-time consensus tracking problem for a group of autonomous
agents modeled by multiple non-identical second-order nonlinear systems. First, a class of distributed
finite-time protocols are proposed based on the relative position and relative velocity measurements.
By providing a topology-dependent Lyapunov function, it is shown that distributed consensus tracking
can be achieved in finite time under the condition that the nonlinear errors between the leader and the
followers are bounded. Then, a new class of observer-based algorithms are designed to solve the finite-
time consensus tracking problem without using relative velocity measurements. The main contribution
of this paper is that, by computing the value of the Lyapunov function at the initial point, the finite settling
time can be theoretically estimated for second-order multi-agent systems with the proposed control
protocols. Finally, the effectiveness of the analytical results is illustrated by an application in low-Earth-
orbit spacecraft formation flying.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During the past two decades, distributed cooperative control
of autonomous agents has emerged as a new research direc-
tion and received increasing interest in different fields with the
advent ofwireless communication networks and powerful embed-
ded systems. Research on this topic aims to understand how vari-
ous group behaviors emerge as a result of local interactions among
individuals. Distributed cooperative control has applications in a
wide range of areas, such as attitude synchronization, state con-
sensus, formation flying, and cooperative surveillance (Chen, Liu,
& Lu, 2007; Hong, Chen, & Bushnell, 2008; Li, Duan, Chen, & Huang,
2010; Ren, Beard, & Atkins, 2007).
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In a distributed cooperative control system, a group of au-
tonomous agents, by coordinating with each other via communi-
cation or sensing networks, can perform certain challenging tasks
which cannot bewell accomplished by a single agent. As one of the
important and fundamental research issues for multi-agent sys-
tems, consensus problem has been extensively studied over the
past few years. The objective is to develop distributed control poli-
cies using only local relative information to ensure that the states
of the agents reach an agreement on certain quantities of inter-
est. A pioneering work on consensus was attributed to Olfati-Saber
and Murray (2004), where a general framework of the consen-
sus problem for networks of integrators was proposed. Since then,
a variety of consensus algorithms have been proposed to solve
the consensus problem under different scenarios; see Cao, Morse,
and Anderson (2008), Hong et al. (2008), Li et al. (2010), Ren and
Beard (2005), Xiao,Wang, Chen, and Gao (2009), Yu, Chen, and Cao
(2007) and references therein. According to the number of lead-
ers in the network, existing consensus algorithms can be roughly
categorized into two classes, namely, leaderless consensus and
leader-following consensus. The latter is also called the distributed
tracking problem, where the objective is to drive the states of
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the followers to track those of the leader. Seminal works on the
consensus tracking problem with integrator-type dynamics in-
clude Cao and Ren (2012) and Hong et al. (2008), where some ef-
fective algorithms were proposed for followers to track a dynamic
leader. Then, the works in Li et al. (2010); Li, Liu, Ren, and Xie
(2013) extended the dynamics of agents to general linear systems.
Moreover, various distributed tracking problems for multiple non-
linear systemswere studied in Hu (2011, 2012), Meng, Lin, and Ren
(2013) Song, Cao, and Yu (2010), Su, Chen, Wang, and Lin (2011)
and Yu, Chen, Cao, and Kruths (2010).

Convergence rate, as a significant performance index for eval-
uating the effectiveness of the designed distributed algorithms,
is a focal research topic in the study of consensus problems. Nu-
merous researchers endeavored to improve the convergence rate
by enlarging the coupling strength, optimizing the system gain,
or designing a better communication topology (Li, Duan, & Chen,
2011; Zhao, Duan, & Wen, 2015). However, the above-mentioned
methods may only guarantee asymptotic consensus. In practical
applications, it is often desirable to achieve consensus in finite
time. Finite-time consensus problem was first studied in Cortés
(2006), where the agents have first-order dynamics. Then, by using
tools from homogeneity theory, finite-time consensus problems
with nonlinear dynamics were investigated in Wang and Hong
(2008). Recently, finite-time leader-following consensus problems
for second-order multi-agent systems have been investigated in
Li, Du, and Lin (2011) and Zhao, Duan, Wen, and Zhang (2013). It
is worth noting that most of the above-mentioned works (Cortés,
2006; Li, Du et al., 2011;Wang & Hong, 2008; Zhao et al., 2013) are
derived based on a common assumption that all agents have iden-
tical dynamics. Generally, this assumption is too strict in practice.
Generally, the above-mentioned results cannot be directly used to
solve the distributed tracking problem for multiple non-identical
second-order nonlinear systems.

Motivated by the above observations, this paper investi-
gates the distributed finite-time tracking problem for a group of
multi-agent systems with non-identical second-order nonlinear
dynamics. Two challenging cases are considered: when both the
relative position and relative velocity measurements are available,
and when only the relative position measurements are available.
The main results of this paper extend the existing works on dis-
tributed consensus tracking of multiple second-order nonlinear
systems in three aspects. First, a class of distributed finite-time
tracking algorithms are proposed that can be used for the case
where the follower dynamics are heterogeneous and the trajectory
of the time-varying leader is arbitrary as long as the nonlinear er-
rors among the agents are bounded. This relaxes the assumptions
that the follower dynamics are identical and the dynamics of the
leader are the same as those of the followers with a zero control
input, as made in Hu (2011, 2012), Li, Du et al. (2011), Song et al.
(2010), Su et al. (2011) and Zhang and Lewis (2012). Then, a dis-
tributed finite-time tracking protocol is designed by using only rel-
ative positionmeasurements, where the velocities of the followers
are assumed to be unavailable. This extends the existing works on
the case of the state feedback as studied in Hu (2011, 2012), Song
et al. (2010), Su et al. (2011), Yu et al. (2010) and Zhang and Lewis
(2012), and provides an efficient strategy for applications with
low-cost configurations, where velocity measurement sensors are
not needed. Third, the estimation of the finite time can be obtained
by computing the value of a carefully designed Lyapunov function
at the initial point. This extends the existing works on asymptotic
consensus as inMeng et al. (2013) and finite-time consensus as dis-
cussed in Zhao, Duan, Wen, and Chen (2015); Zhao et al. (2013). In
addition, it is theoretically significant and practically important to
provide an estimation on the settling time of consensus tracking,
which is another achievement of the present paper.

The remainder of this paper is organized as follows. The
preliminaries and the problem formulation are given in Section 2.

Main theoretical results are established in Sections 3 and 4. In
Section 5, some numerical simulations are reported to illustrate
the theoretical results. Concluding remarks are finally given in
Section 6.

2. Preliminaries and model description

Notations: Let Rn×n be the set of n × n real matrices, R+

the set of positive real numbers and Ip the p-dimensional iden-
tity matrix. P > 0 (P < 0) means that the matrix P is pos-
itive (negative) definite. 1 represents the vector with all entries
being one. Let |t| be absolute value of a scalar t . Given a vec-
tor ξ = [ξ1, ξ2, . . . , ξp]

T , define ∥ξ∥q = (
p

i=1 |ξi|
q)

1
q with

q > 0, sgn(ξ) = [sgn(ξ1), sgn(ξ2), . . . , sgn(ξp)]
T and sig(ξ)1/2 =

[|ξ1|
1/2sgn(ξ1), |ξ2|

1/2sgn(ξ2), . . . , |ξp|
1/2sgn(ξp)]

T , where sgn(·)
is the signum function. Let diag(ξ) represent a diagonal matrix
with diagonal elements ξ1, ξ2, . . . , ξp. ∥T∥∞ denotes the infinite
norm of matrix T . The Kronecker product of matrices A ∈ Rm×n

and B ∈ Rp×q is denoted by A ⊗ B.
Consider a group of N agents. Denote by a graph G = (V, E)

a communication topology among N agents (nodes), where V =

{1, 2, . . . ,N} and E ⊆ V×V represent the set of nodes and the set
of edges, respectively. A directed edge (i, j) ∈ E in graph G means
that agent i can obtain information fromagent j, but not conversely.
The neighborhood of agent i is denoted as Ni = {j ∈ V|(i, j) ∈ E}.
Furthermore, a graph is undirected if (i, j) ∈ E implies (j, i) ∈ E .
An undirected edge (i, j) ∈ E in graph G means that agent i and j
can access information from each other. In this paper, it is assumed
that G is a simple graph, i.e., (i, i) ∉ V , which indicates that each
agent cannot use its own measurements for feedback. A path from
agent i1 to agent is is a sequence of ordered edges in the form
of (ik, ik+1) ∈ E, k = 1, 2, . . . , s − 1. A graph G is said to be
connected if there exists a path among each pair of distinct nodes.
The adjacency matrix of a graph G is denoted by A = (aij) ∈ RN×N ,
where aij = 1 if (i, j) ∈ E and aij = 0 otherwise. The Laplacian
matrix of the graph G associated with the adjacency matrix A is
designed as L = (lij), where lii =

N
j=1 aij and lij = −aij, i ≠

j, i, j = 1, 2, . . . ,N .
In this paper, agents labeled as 1, 2, . . . ,N − 1, are followers

while agent N is the leader. Suppose the leader has no neighbor.
Thus, L can be rewritten as

L =


L1 b
0 0


, (1)

where L1 = Lf − diag(b) ∈ R(N−1)×(N−1) is a square matrix,
in which Lf represents the Laplacian matrix among the followers
and b ∈ R(N−1)×1 is a column vector. Throughout, it is assumed
that the network communication topology among the followers
is undirected. For each follower, there exists at least one directed
path from the follower to the leader.

Before moving on, the following lemmas are provided.

Lemma 1 (Chen et al., 2007, Li et al., 2013, Song et al., 2010). Under
above-mentioned communication topology, b ∈ R(N−1)×1 has at least
one negative entry and L1 is symmetric and positive definite.

Lemma 2 (David, 1987). For real numbers a > 0, b > 0, c > 0, p >
1, q > 1, with 1

p +
1
q = 1, the following inequality is satisfied:

ab ≤ cp
ap

p
+ c−q b

q

q
.

Lemma 3 (David, 1987). For real numbers a ≥ 0, b ≥ 0 and 0 <
p < q, the following inequality is satisfied:

(aq + bq)
1
q ≤ (ap + bp)

1
p .
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