
Automatica 64 (2016) 94–104

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Model-based reinforcement learning for approximate optimal
regulation✩

Rushikesh Kamalapurkar, Patrick Walters, Warren E. Dixon
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, USA

a r t i c l e i n f o

Article history:
Received 10 May 2013
Received in revised form
23 July 2015
Accepted 2 October 2015
Available online 7 December 2015

Keywords:
Model-based reinforcement learning
Concurrent learning
Simulated experience
Data-based control
Adaptive control
System identification

a b s t r a c t

Reinforcement learning (RL)-based online approximate optimal control methods applied to deterministic
systems typically require a restrictive persistence of excitation (PE) condition for convergence. This pa-
per develops a concurrent learning (CL)-based implementation of model-based RL to solve approximate
optimal regulation problems online under a PE-like rank condition. The development is based on the ob-
servation that, given amodel of the system, RL can be implemented by evaluating the Bellman error at any
number of desired points in the state space. In this result, a parametric systemmodel is considered, and a
CL-based parameter identifier is developed to compensate for uncertainty in the parameters. Uniformly
ultimately bounded regulation of the systemstates to a neighborhoodof the origin, and convergence of the
developed policy to a neighborhood of the optimal policy are established using a Lyapunov-based analysis,
and simulation results are presented to demonstrate the performance of the developed controller.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning (RL) enables a cognitive agent to learn
desirable behavior from interactions with its environment. In
control theory, the desirable behavior is typically quantified using
a cost function, and the control problem is formulated as the desire
to find the optimal policy that minimizes a cumulative cost. RL
techniques for discrete time systems are inherently model-free,
and hence, have been a prime focus of research over the past few
decades (Kaelbling, Littman, & Moore, 1996).

Recently, various RL-based techniques have been developed
to approximately solve optimal control problems for continuous-
time and discrete-time deterministic systems (Al-Tamimi, Lewis,
& Abu-Khalaf, 2008; Bhasin et al., 2013; Dierks, Thumati, & Ja-
gannathan, 2009; Doya, 2000; Lewis & Vrabie, 2009; Mehta &
Meyn, 2009; Padhi, Unnikrishnan, Wang, & Balakrishnan, 2006;
Vamvoudakis & Lewis, 2010; Zhang, Cui, & Luo, 2013; Zhang, Cui,
Zhang, & Luo, 2011; Zhang, Liu, Luo, & Wang, 2013). The ap-
proximate solution is facilitated via value function approximation,
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where the optimal policy is computed based on an estimate of the
value function.

Methods that seek online solutions to optimal control problems
are comparable to adaptive control (cf., Bhasin et al., 2013; He &
Jagannathan, 2007; Padhi et al., 2006; Vamvoudakis & Lewis, 2010;
Zhang et al., 2013; Zhang, Wei, & Luo, 2008 and the references
therein). In adaptive control, the estimates for the uncertain
parameters in the plantmodel are updated using the tracking error
as a performance metric; whereas, in online RL-based techniques,
estimates for the uncertain parameters in the value function are
updated using the Bellman error (BE) as a performance metric.
Typically, to establish regulation or tracking, adaptive control
methods do not require the adaptive estimates to convergence to
the true values. However, convergence of the RL-based controller
to a neighborhood of the optimal controller requires convergence
of the parameter estimates to a neighborhood of their ideal
values.

Parameter convergence has been a focus of research in adap-
tive control for several decades. It is common knowledge that least
squares and gradient descent-based update laws generally require
persistence of excitation (PE) in the system state for convergence
of the parameter estimates. Modification schemes such as projec-
tion algorithms, σ -modification, and e-modification are used to
guarantee boundedness of parameter estimates and overall system
stability; however, these modifications do not guarantee param-
eter convergence unless the PE condition is satisfied (Ioannou &
Sun, 1996; Narendra & Annaswamy, 1987, 1989; Sastry & Bodson,
1989).
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In RL-based approximate online optimal control, the
Hamilton–Jacobi–Bellman (HJB) equation along with an estimate
of the state derivative (cf. Bhasin et al., 2013;Mehta &Meyn, 2009),
or an integral form of the HJB equation (cf. Vrabie, 2010) is uti-
lized to approximately evaluate the BE along the system trajec-
tory. The BE, evaluated at a point, provides an indirect measure of
the quality of the estimate of the value function evaluated at that
point. Hence, the unknown value function parameters are updated
based on evaluation of the BE along the system trajectory. Such
weight update strategies create two challenges for analyzing con-
vergence. The system states need to satisfy PE, and the system tra-
jectory needs to visit enough points in the state space to generate a
good approximation of the value function over the entire domain of
operation. These challenges are typically addressed in the related
literature (cf. Al-Tamimi, Lewis, & Abu-Khalaf, 2007; Bhasin et al.,
2013; Kiumarsi, Lewis, Modares, Karimpour, & Naghibi-Sistani,
2014; Lewis & Vrabie, 2009; Modares & Lewis, 2014; Modares,
Lewis, & Naghibi-Sistani, 2013, 2014; Vamvoudakis & Lewis, 2010,
2011; Vamvoudakis, Lewis, & Hudas, 2012) by adding an explo-
ration signal to the control input to ensure sufficient exploration
of the domain of operation. However, no analytical methods exist
to compute the appropriate exploration signal when the system
dynamics are nonlinear.

The aforementioned challenges arise from the restriction that
the BE can only be evaluated along the system trajectories. In par-
ticular, the integral BE is meaningful as a measure of quality of the
value function estimate only if it is evaluated along the system tra-
jectories, and state derivative estimators can only generate numer-
ical estimates of the state derivative along the system trajectories.
Recently, Modares et al. (2014) demonstrated that experience re-
play can be used to improve data efficiency in online approximate
optimal control by reuse of recorded data. However, since the data
needs to be recorded along the system trajectory, the system tra-
jectory under the designed approximate optimal controller needs
to provide enough excitation for learning. In general, such excita-
tion is not available; hence, the simulation results inModares et al.
(2014) are generated using an added probing signal.

In this paper, and in our preliminary work in Kamalapurkar,
Walters, and Dixon (2013), a different approach is used to improve
data efficiency by observing that if the system dynamics are
known, the state derivative, and hence, the BE can be evaluated
at any desired point in the state space. Unknown parameters in
the value function can therefore be adjusted based on least square
minimization of the BE evaluated at any number of arbitrary points
in the state space. For example, in an infinite horizon regulation
problem, the BE can be computed at points uniformly distributed
in a neighborhood around the origin of the state space. The results
of this paper indicate that convergence of the unknownparameters
in the value function is guaranteed provided the selected points
satisfy a rank condition. Since the BE can be evaluated at any
desired point in the state space, sufficient exploration can be
achieved by appropriately selecting the points to cover the domain
of operation. If the system dynamics are partially unknown, an
approximation to the BE can be evaluated at any desired point in
the state space based on an estimate of the system dynamics.

If each new evaluation of the BE along the system trajectory
is interpreted as gaining experience via exploration, the use of a
model to evaluate the BE at an unexplored point in the state space
can be interpreted as a simulation of the experience. Learning
based on simulation of experience has been investigated in results
such as Abbeel, Quigley, andNg (2006); Atkeson and Schaal (1997);
Deisenroth (2010); Deisenroth and Rasmussen (2011); Mitro-
vic, Klanke, and Vijayakumar (2010); Singh (1992) for stochastic
model-based RL; however, these results solve the optimal control
problem off-line in the sense that repeated learning trials need to
be performed before the algorithm learns the controller, and sys-
tem stability during the learning phase is not analyzed. This paper

furthers the state of the art for nonlinear, control affine plants with
linearly parameterizable (LP) uncertainties in the drift dynamics
by providing an online solution to deterministic infinite horizon
optimal regulation problems. In this paper, a CL-based parameter
estimator is developed to exponentially identify the unknown pa-
rameters in the system model, and the parameter estimates are
used to implement simulation of experience by extrapolating the
BE.

Themain contributions of this paper include a novel implemen-
tation of model-based RL in deterministic nonlinear systems and
a detailed stability analysis that establishes simultaneous online
identification of system dynamics and online approximate learn-
ing of the optimal controller, while maintaining system stability.
Simulation results are provided that demonstrate the approximate
solution of infinite horizon optimal regulation problems online for
inherently unstable nonlinear systemswith uncertain drift dynam-
ics. The simulations also demonstrate that the developed method
can be used to implement RL without the addition of a probing sig-
nal.

2. Problem formulation

Consider a control affine nonlinear dynamical system1

ẋ (t) = f (x (t)) + g (x (t)) u (t) , (1)

where x : R≥t0 → Rn denotes the system state trajectory, u :

R≥t0 → Rm denotes the control input, f : Rn
→ Rn denotes

the drift dynamics, and g : Rn
→ Rn×m denotes the control

effectiveness. In the following, the notation φu (t; t0, xo) denotes
a trajectory of the system in (1) under the controller u with the
initial condition xo ∈ Rn and initial time t0 ∈ R≥0.2 The objective
is to solve the infinite horizon optimal regulation problem online,
i.e., to find the optimal policy u∗

: Rn
→ Rm defined as

u∗

xo


, argmin
u(τ )∈U|τ∈R≥t


∞

t
r

φu τ ; t, xo


, u (τ )


dτ , (2)

while regulating the system states to the origin.3 In (2), U ∈ Rm

denotes the action space and r : Rn
× Rm

→ R≥0 denotes the
instantaneous cost defined as r (xo, uo) , xoTQx + uoTRuo, where
Q ∈ Rn×n and R ∈ Rm×m are constant positive definite symmetric
matrices. The class of nonlinear systems considered in this paper
is characterized by the following assumption.

Assumption 1. The drift dynamics f is an unknown, LP locally
Lipschitz function such that f (0) = 0, and the control effectiveness
g is a known bounded locally Lipschitz function. Furthermore, f ′

:

Rn
→ Rn×n is continuous, where (·)′ denotes the partial derivative

with respect to the first argument.

A closed-form solution to the optimal control problem is formu-
lated in terms of the optimal value function V ∗

: Rn
→ R≥0 de-

fined as

V ∗

xo


, min
u(τ )∈U|τ∈R≥t


∞

t
r

φu τ ; t, xo


, u (τ )


dτ . (3)

1 For notational brevity, unless otherwise specified, the domain of all the
functions is assumed to beR≥0 , whereR≥a denotes the interval [a, ∞). The notation
∥·∥ denotes the Euclidean norm for vectors and the Frobenius norm for matrices.
The notation (·)o denotes arbitrary variables.
2 Whenever the initial time and state are implied or unimportant, a trajectory of

the system in (1) evaluated at time t will be denoted by x (t).
3 The definition in (2) implicitly assumes existence of the optimal policy.
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