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a b s t r a c t

Irreversible port-Hamiltonian systems (IPHS) have recently been proposed for the modelling of irre-
versible thermodynamic systems. On the other hand, a classical result on the use of the second law of
thermodynamics for the stabilization of irreversible processes is the celebrated thermodynamic avail-
ability function. These frameworks are combined to propose a class of Passivity Based Controller (PBC) for
irreversible processes. An alternative formulation of the availability function in terms of internal energy
is proposed. Using IPHS amatching-condition, which is interpreted in terms of energy-shaping, is derived
and a specific solution that permits to assign a desired closed-loop structure and entropy rate is proposed.
The approach can be compared with Interconnection and Damping Assignment-PBC, this method how-
ever leads in general to thermodynamically non-coherent closed-loop systems. In this paper a system
theoretic approach is employed to derive a constructive method for the control design. The closed-loop
system is in IPHS form, hence it can be identified with a thermodynamic system and the control param-
eters related with thermodynamic variables, such as the reaction rates in the case of chemical reactions.
A generic non-linear non-isothermal continuous stirred tank reactor is used to illustrate the approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The different suggestions for the modelling of irreversible
thermodynamic processes as (dissipative) port-Hamiltonian sys-
tems (PHS) (Duindam, Macchelli, Stramigioli, & Bruyninckx, 2009;
Maschke & van der Schaft, 1992; van der Schaft & Maschke, 1995)
have led to a class of system called quasi-PHS (Dörfler, Johnsen, &
Allgöwer, 2009; Eberard, Maschke, & van der Schaft, 2007; Hangos,
Bokor, & Szederkényi, 2001; Hoang, Couenne, Jallut, & Le Gorrec,
2011;Otero-Muras, Szederkényi, Alonso, &Hangos, 2008; Ramirez,
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Sbarbaro, & Ortega, 2009). These systems retain much of the dis-
sipative port Hamiltonian structure, but differ by their structure
(interconnection and dissipation) matrices and input vector fields
which depend explicitly on the gradient of the Hamiltonian. This
framework has recently been combined with the framework of
the thermodynamic availability function (Alonso & Ydstie, 1996,
2001; Ydstie & Alonso, 1997) to derive Lyapunov conditions for the
stabilization of irreversible thermodynamic systems (Hoang et al.,
2011; Hoang, Couenne, Jallut, & Le Gorrec, 2012; Ydstie, 2002).
From a control design perspective this implies that when look-
ing for closed-loop potentials, for instance when passivity based
control (PBC) techniques are applied (Ortega, van der Schaft, Ma-
reels, &Maschke, 2001; Ortega, van der Schaft,Maschke, & Escobar,
2002), the integrability conditions lead to partial differential equa-
tions which are nonlinear instead of linear. Furthermore, it is well
known that for this case a physically consistent parametrization of
the control problem is far from obvious (Kotyczka, 2013). This im-
plies closed-loop systems without physical interpretation or very
complex matching equations to solve during the design.

In this paper we shall consider the control of a class of such
extensions of PHS, named Irreversible Port-Hamiltonian Systems
(IPHS) (Ramirez, Maschke, & Sbarbaro, 2013a,b). These systems
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embed by construction simultaneously the first (conservation of
energy) and the second principle (irreversible creation of entropy).
An incremental energy function, defined as an energy based avail-
ability function, is used as desired closed-loopHamiltonian follow-
ing Ramirez, Gorrec, Maschke, and Couenne (2013); Ramirez, Le
Gorrec, andMaschke (2014). A Lyapunov condition is then derived
and interpreted in terms of energy-shaping passivity based control
(PBC) (Ortega et al., 2001, 2002). The Lyapunov condition is then
further developed and a specific non-linear solution, which per-
mits to assign a desired closed-loop interconnection structure and
entropy dissipation rate, is proposed.

The proposed design procedure consists in finding appropri-
ate structure matrices and desired thermodynamic control func-
tions to solve algebraically (Acosta, Ortega, Astolfi, & Sarras, 2008;
Nunna, Sassano, & Astolfi, 2015) the associated matching equa-
tions. The IPHS formulation allows to systematically parametrize
the problem to derive the conditions for a globally stabilizing con-
troller which preserves the IPHS structure in closed-loop. Since the
structure of the closed-loop system is IPHS, it can be interpreted as
a thermodynamic system and the parameters of the controller re-
lated with thermodynamic variables, such as the reaction rates in
the case of chemical reactions.

The paper is organized as follows: Section 2 recalls the defini-
tion andphysical interpretation of IPHS. In Section 3 the framework
of the thermodynamic availability function is presented and a gen-
eral Lyapunov condition is derived. Section 4 presents the main
results of this paper. In Section 5 the approach is applied to the
example of a generic non-linear non-isothermal CSTR model. Fi-
nally Section 6 gives some closing remarks and comments on fu-
ture work.

2. Irreversible Port-Hamiltonian systems

Irreversible Port Hamiltonian Systems (IPHS) have been defined
in Ramirez, Maschke, et al. (2013a) as an extension of Port
Hamiltonian systems for the purpose of representing not only
the energy balance but also the entropy balance, essential in
thermodynamic systems.

Definition 1 (Ramirez, Maschke, et al., 2013a). An input affine IPHS
is defined by the dynamic equation and output relation

ẋ = R

x, ∂U

∂x , ∂S
∂x


J
∂U
∂x

(x) + g

x, ∂U

∂x


u,

y = g⊤

x, ∂U

∂x

 ∂U
∂x

(x)
(1)

where x(t) ∈ Rn is the state vector, the smooth functions U(x) :

Rn
→ R and S(x) : Rn

→ R represent, respectively, the internal
energy (the Hamiltonian) and the entropy functions, J ∈ Rn×n is
a constant skew-symmetric structure (interconnection) matrix of
the Poisson bracket (Maschke, van der Schaft, & Breedveld, 1992)
acting on any two smooth functions Z and G as:

{Z,G}J =
∂Z
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⊤

(x)J
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(x). (2)

The real function R = R
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is composed by the product of

a positive definite function γ and the Poisson bracket between the
entropy and the energy functions:
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with γ
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: Rn

→ R, γ ≥ 0, a non-linear positive function.
The inputmap is defined by g


x, ∂U
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∈ Rn×m with the input u(t) ∈

Rm a time dependent function.

The drift dynamic in (1) is defined by a non-linear relation be-
tween the time derivative ẋ of the state variables and ∂U

∂x , charac-
terized by the modulating function R


x, ∂U

∂x , ∂S
∂x


, which explicitly

depends on the differential of the energy ∂U
∂x . The balance equations

of the total energy and entropy functions of IPHS express the first
and second principles of irreversible thermodynamics: the conser-
vation of energy and the irreversible creation of entropy due to
irreversible phenomena. By skew-symmetry of J , the balance equa-
tion of the internal energy,

dU
dt

= y⊤u, (3)

expresses that the system (1) is a lossless dissipative systems with
(energy) supply rate y⊤u (Willems, 1972). The balance equation of
the entropy function is given by
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By Definition 1 the first term is positive: γ

x, ∂U
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{S,U}

2
J = σ


x,

∂U
∂x


≥ 0. For irreversible thermodynamic systems, this term rep-

resents the internal entropy production and its positivity expresses
the second principle of thermodynamics. The second term in (4)
corresponds to the definition of an entropy supply rate. For further
details on IPHS and its thermodynamic interpretation we refer the
reader to Ramirez, Maschke, et al. (2013a).

3. Energy shaping of IPHS

In Ramirez, Gorrec, et al. (2013) the framework of the thermo-
dynamic availability function, formalized for the control of ther-
modynamic systems by Alonso and Ydstie (2001) and with roots
in the works of Keenan (1951) and Willems (1972), has been used
to derive a Lyapunov condition for the stability analysis of IPHS. Us-
ing the convexity of the internal energy function, a convex exten-
sion named energy based availability function has been defined and
shown to be a Lyapunov function candidate for the closed-loop sys-
tem. This has been done following Alonso and Ydstie (2001), Hoang
et al. (2011, 2012) andYdstie (2002),where an entropy based avail-
ability function is constructed for irreversible thermodynamic sys-
tems.

In the sequel the stability condition presented in Ramirez,
Gorrec, et al. (2013) is developed and it is shown that it defines an
energy shaping controller (Ortega et al., 2001, 2002) with respect to
a new closed-loop Hamiltonian and supply rate.

Definition 2. The energy based availability function is defined as

A(x, x∗) = U(x) + Ua(x, x∗) (5)

with

Ua(x, x∗) = −U(x∗) −
∂U
∂x

(x∗)⊤(x − x∗) (6)

and x∗ an equilibrium point.

Assumption 3. The availability function A(x, x∗) is strictly positive
with minimum A(x = x∗) = 0 where x∗ is an equilibrium point.

This assumption is fulfilled for any equilibrium point of a
monophasic thermodynamic systems if one of the extensive vari-
ables is fixed since then the internal energy is a strictly convex
function (Jillson & Ydstie, 2007).

It is clear from Definition 2 that the energy based availability
function qualifies as a Lyapunov function candidate for controlled
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