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a b s t r a c t

This paper presents two nonsmooth leader-following formation protocols for nonidentical Lipschitz
nonlinear multi-agent systems with directed communication network topologies. One protocol is used
to achieve finite-time formation for first-order systems, and the other to achieve asymptotic formation
for second-order systems. In these protocols, the states of all the agents, including the leader and the
followers, are available only locally within their neighborhoods. Some sufficient conditions for reaching
formations are derived for nonidentical nonlinear systems satisfying locally Lipschitz conditions. To prove
the stability, a new nonsmooth Lyapunov function is constructed, with stability conditions derived under
a nonsmooth analysis framework. The proposed formation protocols are applied to multi-spacecraft
systems in deep-space exploration, with numerical simulations demonstrating the effectiveness of the
theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Formation control is an important task in cooperative control
of multi-agent systems due to its broad applications to unmanned
aerial vehicles, autonomous spacecraft, autonomous underwater
vehicles, automated military systems, sensor networks, biological
systems, and so on. The objective of formation is to form and
maintain a certain position-orientation pattern during the motion
of a group of mobile agents (Chen, Wang, & Li, 2012); that is,
the movement of all agents is to achieve and then maintain
pre-specified relative positions and orientations with respect to
each other. A problem closely related to formation control is
synchronization, in which the goal of all agents is to achieve and
then maintain the same state; therefore, it can be considered as a
special case of formation.
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Significant progress has been made in the study of formation
control for multi-agent systems, where most works considered
simple cases in which the agents are governed by first-order dy-
namics. To name a few, the synchronization problem for single-
integrator multi-agent systems and linear multi-agent systems
was considered in Cao, Ren, and Li (2009), Hui (2011), Li, Duan,
Chen, and Huang (2010); Tuna (2009), and finite-time synchro-
nization for nonlinear multi-agent systems was analyzed in Cao
and Ren (2012), Li and Qu (2014) and Zhang, Yang, Zhao, and Wen
(2013). In Zhang et al. (2013), the interactions between follow-
ers are required to be bidirectional. In Cao and Ren (2012), the
interaction graph is directed, but the nonlinear functions are de-
termined by the corresponding state components which, however,
may not be satisfied in practice. In Li and Qu (2014), the inter-
action topologies are directed and switching, but the nonlinear
systems are identical and bounded. In the past few years, some
general formation control problems of first-order multi-agent sys-
tems were also investigated, for instance a finite-time formation
control protocol was proposed for single-integrator multi-agent
systems in Cao, Ren, and Meng (2010). Asymptotic formation con-
trol problems of multi-agent systems with linear dynamics were
studied in Fax andMurray (2004) and Lafferriere,Williams, Caugh-
man, and Veerman (2005).

Recently, the second-order formation problem has been
recognized as an important topic for study. As a special case

http://dx.doi.org/10.1016/j.automatica.2015.11.004
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.11.004
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.11.004&domain=pdf
mailto:lvjing@buaa.edu.cn
mailto:feichen@xmu.edu.cn
mailto:eegchen@cityu.edu.hk
http://dx.doi.org/10.1016/j.automatica.2015.11.004


J. Lü et al. / Automatica 64 (2016) 112–120 113

of formation, synchronization in double-integrator multi-agent
systems was considered in Hong, Chen, and Bushnell (2008)
and Ren (2008). Subsequently, for nonlinear multi-agent systems,
synchronization was analyzed in Song, Cao, and Yu (2013) and
Wen, Duan, Yu, and Chen (2013),where the nonlinear functions are
identical. In Hu (2012), the nonlinear functions can be nonidentical
but should have first-order and second-order derivatives. In Ding
(2013) and Dong and Huang (2014), the nonidentical nonlinear
functions are polynomials or smooth functions, and they have
to be determined by the first and the next state components,
where the tracking signals are generated by a linear system. In
Liu and Jiang (2013), the nonlinear functions can be nonidentical
and satisfy the Lipschitz conditions, but they are also determined
by the first and the next state components, and moreover the
states of all agents converge to a constant value. Some general
formation control problems of second-order multi-agent systems
were also investigated. For double-integratormulti-agent systems,
the formation problem was investigated in Chen, Chen, Liu, Xiang,
and Yuan (2008), Ren (2006), and for nonlinear multi-agent
systems the formation problem was analyzed in Li, Chen, and Liu
(2013) and Wang and Wu (2012). In Li et al. (2013), the nonlinear
functions are identical and determined only by the velocity term.
In Wang and Wu (2012), the nonlinear functions are identical and
each agent needs to obtain information of the leader. However, in
many practical cases, the agents can only share information with
their neighbors, so the design of control protocols has to be based
on local information through neighboring interactions.

Letting the pre-specified relative positions be zero, formation
protocols will be reduced to synchronization protocols; however,
the reverse may not be possible in general. So, two leader-
following formation protocols are proposed in this paper: one
is used to achieve finite-time formation for first-order systems
and the other to achieve asymptotic formation for second-order
systems. The main contribution of this paper is twofold: (i) The
nonlinear functions of all agents, including the leader and the
followers, can be nonidentical and only need to satisfy Lipschitz
conditions. (ii) A newnonsmooth Lyapunov function is constructed
to prove the stability of the overall network. Using the new
Lyapunov function, the stability analysis can be performed under a
nonsmooth analysis framework. Thus, the proof technique of this
paper is different from the others used in the literature, and ismore
rigorous from a mathematical point of view.

The rest of the paper is organized as follows. Section 2 intro-
duces some preliminaries. Section 3 discusses the finite-time first-
order formation tracking problem with a directed communication
topology and nonlinear agent dynamics. Section 4 discusses the
asymptotic second-order formation tracking problem with a di-
rected topology and nonlinear dynamics. Section 5 shows some
examples in deep-space exploration to verify the theoretical re-
sults. Finally, Section 6 summarizes the investigation. To have bet-
ter readability of this paper, most detailed proofs of the results are
presented in a supplementary file (Lü, Chen, & Chen, 0000).

2. Background and preliminaries

Denote by G = (V, E, A) a weighted directed graph of order N ,
with a set of nodes V = {v1, v2, . . . , vN}, a set of directed edges
E ⊆ V × V , and a weighted adjacency matrix A =


aij


∈ RN×N .

The node indices belong to a finite integer set I = {1, 2, . . . ,N}. A
directed edge Eij in the network G is denoted by the ordered pair of
nodes (vi, vj), which means that node vj can receive information
from node vi. The set of neighbors of node vi is defined as Nvi =

{vj ⊂ V : (vj, vi) ∈ E}. The adjacency matrix of a weighted
directed graph is defined as follows: aij > 0 if and only if vj ∈ Nvi ,
otherwise aij = 0, and aii = 0 for all i ∈ I. A directed path is an
ordered sequence of edges {(vi1 , vi2), (vi2 , vi3), . . . , (vim−1, vim)},

where 1 < im ≤ N . In a directed graph, a directed tree consists
of all directed paths without loops. A node vi is called a root of a
directed tree if for every node vj in the graph there is a directed
path connecting vi to vj. A directed spanning tree is a directed tree
that connects all nodes of the network.

Next, somemathematical preliminaries on nonsmooth analysis
are introduced. Consider a vector differential equation given by
ż = g(t, z), where z ∈ Rm, and g : Rm

→ Rm is Lebesgue
measurable and locally essentially bounded. A Filippov solution
of the above differential equation is defined to be an absolutely
continuous function z : [0, τ ] → Rm such that ż(t) ∈ K[g](t, z),
where K[g](t, z) =


δ>0


µ(S)=0 co{g(Bδ(z) \ S)}, µ(.) denotes

the usual Lebesgue measure in Rm, co denotes the convex closure,
Bδ(z) denotes the open ball of radius δ centered at z, and S denotes
the set of zero measure. A function f : Rd

→ Rm is locally Lipschitz
at x ∈ Rd if there exists a constant Lx such that ∥f (t, y)−f (t, y′)∥ ≤

Lx∥y − y′
∥ for all y, y′

∈ B(x, ϵ), where B(x, ϵ) is a ball of radius
ϵ > 0 centered at x. A function is locally Lipschitz on a region J ⊂ Rd

if it is locally Lipschitz at x for all x ∈ J , and if J = Rd then it is global.
Given f : Rd

→ R, the right directional derivative of f at x in the
direction v ∈ Rd is defined as f ′(x; v) = limh→0+

f (x+hv)−f (x)
h when

this limit exists. The generalized directional derivative of f at x in the
direction v ∈ Rd is defined as f o(x; v) = lim sup y→x

h→0+

f (y+hv)−f (y)
h

when this limit exists. A function f : Rd
→ R is regular at x ∈ Rd if

f ′(x; v) = f o(x; v) for all v ∈ Rd. Given a locally Lipschitz function
f : Rd

→ R and a set-valued map F : Rd
→ B(Rd), where B(Rd)

is the set consisting of all possible subsets of Rd, the set-valued Lie
derivative L̃F f : Rd

→ B(Rd) of f with respect to F at x is defined
as L̃F f (x) = {a ∈ R : there exists v ∈ F (x) such that ζ Tv =

a for all ζ ∈ ∂ f (x)}, where ∂ f is the general gradient of the locally
Lipschitz function f .

In addition, the following lemma is needed to derive the main
results of the paper.

Lemma 1 (Cortés, 2008a). Let F : Rd
→ B(Rd) be a set-valued

map, xe be an equilibrium of F , and D ⊆ Rd be an open connected
set with xe ∈ D . Furthermore, let f : Rd

→ R satisfy the following
conditions:
(1) f is locally Lipschitz and regular on D .
(2) f (xe) = 0, and f (x) > 0 for all x ∈ D \ {xe}.
(3) max L̃F f (x) < 0 for all x ∈ D \ {xe}.

Then, xe is a strongly asymptotically stable equilibrium, in the sense
that the asymptotical stability is retained by all the solutions in the
set-valued map F .

3. Distributed formation control of first-order nonlinearmulti-
agent systems

In this section, the finite-time formation control problem
for first-order nonlinear multi-agent systems with a directed
communication network topology is studied. The basic idea is to
design the control laws strong enough to attenuate the effect of
the nonidentical and nonlinear system dynamics in finite time.

3.1. Problem description

Consider a first-order multi-agent system consisting of N
follower agents and one leader agent. The dynamics of the
followers and the leader are described by

ẋi(t) = fi(t, xi(t)) + ui(t), i = 1, 2, . . . ,N,

ẋ0(t) = f0(t, x0(t)), (1)

respectively, where fi : R × Rn
→ Rn describes the nonlinear

dynamics of follower i, f0 : R×Rn
→ Rn is the nonlinear dynamics

of the leader, xi ∈ Rn and x0 ∈ Rn are the states of follower
i and the leader respectively, and ui ∈ Rn is the control input,
i = 1, 2, . . . ,N .
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