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a b s t r a c t

In this brief paper, we study the value function in maximum hands-off control. Maximum hands-off
control, also known as sparse control, is the L0-optimal control among the feasible controls. Although
the L0 measure is discontinuous and non-convex, we prove that the value function, or the minimum L0
norm of the control, is a continuous and strictly convex function of the initial state in the reachable set,
under an assumption on the controlled plant model. We then extend the finite-horizonmaximum hands-
off control tomodel predictive control (MPC), and prove the recursive feasibility and the stability by using
the continuity and convexity properties of the value function.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control is widely used in recent industrial products not
just for achieving the best performance but for reducing the control
effort. For example, the classical LQR (Linear Quadratic Regulator)
control gives a way to consider the tradeoff between performance
and control-effort reduction by using weighting functions on the
states and the control inputs with the L2 norm (i.e. the energy);
see Anderson and Moore (2007) for example.

Recently, a novel control method, called maximum hands-off
control, has been proposed in Nagahara, Quevedo, and Nešić (2013,
2016), which maximizes the time duration in which the control
is exactly zero among the feasible controls. An example of hands-
off control is a stop–start system in automobiles, in which an
automobile automatically shuts down the engine (i.e. zero control)
to avoid it idling for long periods of time, and also to reduce CO or
CO2 emissions as well as fuel consumption. Therefore, the hands-
off control is a kind of green control as discussed in Nagahara,
Quevedo, and Nešić (2014b). Also, the hands-off control is effective
in hybrid/electric vehicles, railway vehicles, networked/embedded
systems, to name a few; see Nagahara et al. (2016).
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Maximum hands-off control is related to sparsity, which is
widely studied in compressed sensing, for which we point the
reader to Eldar and Kutyniok (2012). Sparsity is also applied to
control problems such as networked control in Kong, Goodwin,
and Seron (2015) and Nagahara, Quevedo, and Østergaard (2014a),
security of control systems in Fawzi, Tabuada, and Diggavi (2014),
state estimation in Sanandaji, Wakin, and Vincent (2014), to name
a few.

A mathematical difficulty in the maximum hands-off control is
that the cost function, which is defined by the L0 measure (the sup-
port length of a function), is highly nonlinear; it is discontinuous
and non-convex. To solve this problem, a recent work of Nagahara
et al. (2013, 2016) has proposed to reduce the problem to an L1
optimal control problem, and shown the equivalence between the
maximumhands-off (or L0 optimal) control and the L1 optimal con-
trol under the assumption of normality.

Motivated by this work, we investigate the value function in the
maximum hands-off control. The value function is defined as the
optimal value of the cost function of the optimal control problem.
Although the L0 measure in the maximum hands-off control is
discontinuous and non-convex, we prove that the value function is
a continuous and strictly convex function of the initial state in the
reachable set, under an assumption on the controlled plant model.
We then extend the finite-horizon maximum hands-off control to
model predictive control (MPC), and prove the recursive feasibility
(see Rossiter (2004)) and the stability by using the continuity and
convexity properties of the value function.

The present paper expands on our recent conference contribu-
tions of Ikeda and Nagahara (2015a,b) by rearranging the contents,
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incorporating convexity analysis of the value function, and includ-
ing extension to model predictive control.

The remainder of this paper is organized as follows: In
Section 2, we give mathematical preliminaries for our subsequent
discussion. In Section 3, we review the problem of maximum
hands-off control. Section 4 investigates the continuity of the value
function in maximum hands-off control, and Section 5 discusses
its convexity. Section 6 discusses model predictive control and the
stability. Section 7 presents an example ofmodel predictive control
to illustrate the effectiveness of the proposedmethod. In Section 8,
we offer concluding remarks.

2. Mathematical preliminaries

This section reviews basic definitions, facts, and notation that
will be used throughout the paper.

Let n be a positive integer. For a vector x ∈ Rn and a scalar ε > 0,
the ε-neighborhood of x is defined by

B(x, ε) , {y ∈ Rn
: ∥y − x∥ < ε},

where ∥ · ∥ denotes the Euclidean norm in Rn. Let X be a subset
of Rn. A point x ∈ X is called an interior point of X if there exists
ε > 0 such that B(x, ε) ⊂ X. The interior of X is the set of all
interior points of X, and we denote the interior of X by intX. A set
X is said to be open if X = intX. For example, intX is open for
every subset X ⊂ Rn. A point x ∈ Rn is called an adherent point of
X if B(x, ε) ∩ X ≠ ∅ for every ε > 0, and the closure of X is the
set of all adherent points of X. A set X ⊂ Rn is said to be closed if
X = X, whereX is the closure ofX. The boundary ofX is the set of
all points in the closure ofX, not belonging to the interior ofX, and
we denote the boundary of X by ∂X, i.e., ∂X = X − intX, where
X1 − X2 is the set of all points which belong to the set X1 but not
to the set X2. In particular, if X is closed, then ∂X = X − intX,
since X = X. A set X ⊂ Rn is said to be convex if, for any x, y ∈ X
and any λ ∈ [0, 1], (1 − λ)x + λy belongs to X.

A real-valued function f defined on Rn is said to be upper semi-
continuous on Rn if for every α ∈ R the set {x ∈ Rn

: f (x) < α}

is open, and f is said to be lower semi-continuous on Rn if for every
α ∈ R the set {x ∈ Rn

: f (x) > α} is open. It is known that a
function f is continuous on Rn if and only if it is upper and lower
semi-continuous onRn; see e.g. Rudin (1987, pp. 37). A real-valued
function f defined on a convex set C ⊂ Rn is said to be convex if

f

(1 − λ)x + λy


≤ (1 − λ)f (x) + λf (y),

for all x, y ∈ C and all λ ∈ (0, 1), and f is said to be strictly convex
if the above inequality holds strictly whenever x and y are distinct
points and λ ∈ (0, 1).

Let T > 0. For a continuous-time signal u(t) over a time interval
[0, T ], we define its L1 and L∞ norms respectively by

∥u∥1 ,

 T

0
|u(t)|dt, ∥u∥∞ , sup

t∈[0,T ]

|u(t)|.

We define the support set of u, denoted by supp(u), by the set
{t ∈ [0, T ] : u(t) ≠ 0}. The L0 norm of a measurable function u
as the length of its support, that is,

∥u∥0 , m

supp(u)


,

wherem is the Lebesgue measure on R.

3. Maximum hands-off control problem

In this paper, we consider a linear time-invariant system
represented by

ẋ(t) = Ax(t) + Bu(t), t ≥ 0, (1)

Fig. 1. The L0 kernel φ0(u) and its convex approximation |u| for the L1 norm.

where x(t) ∈ Rn, u(t) ∈ R, A ∈ Rn×n, and B ∈ Rn×1. We here
consider a single-input case for simplicity (see Ikeda and Nagahara
(2015b) for a multi-input case). Throughout this paper, we assume
the following:

Assumption 1. The pair (A, B) is controllable and the matrix A is
nonsingular.

Let T > 0 be the final time of control. For the system (1), we call
a control u = {u(t) : t ∈ [0, T ]} ∈ L1 feasible if it steers x(t)
from a given initial state x(0) = ξ ∈ Rn to the origin at time T
(i.e., x(T ) = 0), and satisfies the magnitude constraint ∥u∥∞ ≤ 1.
We denote byU(ξ) the set of all feasible controls for an initial state
ξ ∈ Rn, that is,

U(ξ) ,


u ∈ L1 :

 T

0
e−AsBu(s)ds = −ξ, ∥u∥∞ ≤ 1


. (2)

Themaximum hands-off control is theminimum L0-norm (or the
sparsest) control among the feasible control inputs. This control
problem is formulated as follows.

Problem 2 (Maximum Hands-Off Control). For a given initial state
ξ ∈ Rn, find a feasible control u ∈ U(ξ) that minimizes J(u) =

∥u∥0.

The value function for this optimal control problem is defined as

V (ξ) , min
u∈U(ξ)

J(u) = min
u∈U(ξ)

∥u∥0. (3)

Note that the cost function J(u) can be rewritten as

J(u) =

 T

0
φ0(u) dt,

where φ0 is the L0 kernel function defined by

φ0(u) ,


1, if u ≠ 0,
0, if u = 0.

Fig. 1 shows the graph of φ0(u). As shown in this figure, the kernel
function φ0(u) is discontinuous at u = 0 and non-convex. How-
ever, in the following sections,wewill show that the value function
V (ξ) in (3) is continuous and strictly convex.

4. Continuity of value function

In this section, we investigate the continuity of the value
function V (ξ) in (3).

First, we define the reachable set for the control problem
(Problem 2) by

R ,

 T

0
e−AsBu(s)ds : ∥u∥∞ ≤ 1


⊂ Rn.

The following is a fundamental lemma of the paper:
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