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a b s t r a c t

Traditional model-based approaches are based on periodic iterations, where the continuous-time model
is discretizedwith a fixed period. Despite the easiness in analysis and design, such periodic approximation
model may be undesirable from the computation-efficiency point of view. This paper presents the
Lebesgue-approximation model (LAM) of continuous-time nonlinear systems, where the iteration is
activated on an ‘‘as-needed’’ basis, but not periodically. We show that the proposed LAM behaves exactly
the same as a specific event-triggered feedback system, through which the properties of the LAM can be
studied.We provide a sufficient condition to ensure asymptotic stability of the LAM and derive theoretical
bounds on the difference between the states of the LAM and the original continuous-time system. The
LAM is then integrated in the particle-filtering approach for fault prognosis. Simulation results show that
the LAM can dramatically reduce the number of iterations in prognosis without sacrificing accuracy and
precision.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Model-based approaches are widely used in control com-
munity. In such approaches, the physical dynamics can be de-
scribed by a mathematical model, based on which one can address
problems associated with controller synthesis and analysis, opti-
mization, and prediction, etc. When implementing model-based
algorithms in computers, the traditional method is to approximate
the model with a fixed period over the time horizon and itera-
tions take place periodically. Such a periodic approximationmodel
is known as ‘‘Riemann Approximation model’’ (RAM) (Åström &
Bernhardsson, 2002).

A nice feature of using RAM is the easiness in analysis and
design. However, it may be undesirable in many situations, from
the computation-efficiency point of view. On the one hand, since
the iteration period is determined according to the worst-case
operating scenario, the state of the model might be iterated even
if there is little change in the actual states. In other words, it may
take greater computational resources than it actually needs. This
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may result in significant over-provisioning of the real-time system
hardware, in particular for embedded processors which have very
limited computation ability (Tabuada, 2007; Wang & Lemmon,
2009). On the other hand, when the system becomes unstable,
the state will diverge exponentially. In this case, it is expected to
perform iterations more frequently so that the model can closely
track the actual state, which cannot be met by RAM. It suggests
cost-efficient approaches to construct the approximation models
where iterations can be executed on an ‘‘as-needed’’ basis.

One possible solution is the discrete event simulation (DEVS)
formalism, where the concept of the quantized state system (QSS)
was introduced for real-time simulation (Zeigler, Praehofer, & Kim,
2000). The basic idea of QSS is to first quantize the state space
based on a pre-defined quantizer Q(·) and then define transitions
between the pre-defined quantized states characterized by Q(·).
The frequency of state transition really depends on the state of
the model, but not directly on the fixed amount of time elapsed.
The existence of stabilizing quantizers has been established in
Kofman (2002), Kofman and Junco (2001) and Zeigler et al. (2000).
This approach was further explored in Cellier and Kofman (2006),
Cellier, Kofman, Migoni, and Bortolotto (2008) and Kofman and
Junco (2001), which extends the original approach to illegitimate
models. These results indicate that the DEVS promises a significant
improvement of computational efficiency in real-time simulations
of large and complex systems such as power systems (Mamai,
Smith, Kondratiev, & Dougal, 2011). Although QSS demonstrates
great advantages in cost-efficiency, there is a lack of theoretical
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foundation and designmethods to construct stabilizing quantizers.
It is alsoworthmentioning that all of the priorwork onQSS focuses
on the uniform quantizer.

Inspired by the QSS approach, this paper considers sporadic
discretized model of dynamic systems. Different from the work in
Meng and Chen (2012) and Xu and Cao (2011) using stochastic
approaches, the model developed in this paper is completely
deterministic. Another approach similar in spirit is Lebesgue
piecewise affine approximation in Azuma, Imura, and Sugie (2010),
where the state space is partitioned into a number of sets and the
nonlinear dynamics can be approximated by a linear system over
each set. However, the state space is partitioned independent of the
initial state in Azuma et al. (2010) and the nonlinearity has to take
a special form f (x) =

N
k=1

n
i=1 fik(xi)where xi is the ith element

of x. Moreover, the time information is not explicitly characterized
in this approach.

This paper considers sporadic approximation models of multi-
dimension continuous-time nonlinear systems, including aperi-
odic iterations in both state and time. We study stability of this
model and its closeness to the continuous-time system. The contri-
butions of this paper are as follows: (i)Wepresent the Lebesgue ap-
proximation model (LAM), where the next state is computed only
when it is certain distance away from the previous state. Different
from the QSS, the states in the LAM do not have to be pre-defined.
Another significant difference is that the quantizer in the LAMdoes
not have to be uniform. Compared with Azuma et al. (2010), the
initial state and iterations in time are taken into account in the
state space partition; (ii) We develop sufficient conditions to en-
sure asymptotic stability of the LAM without exhibits of Zeno be-
havior. Theoretical bounds are derived to quantify the difference
between the states of the LAM and the continuous-time system;
and (iii) We apply the LAM inmodel-based fault prognosis. Experi-
ments show that the LAM-based prognosis can dramatically reduce
the computational costs without sacrificing accuracy.

2. Problem formulation

Notations. We denote by Rn the n-dimensional real vector space,
by R+ the set of the real positive numbers. We use ∥ · ∥ to denote
the Euclidean norm of a vector and the induced 2-norm of amatrix.
The symbol e is used for exponential function to distinguish it from
the error e. Given two functions φ,ψ : R → R, we define φ ◦

ψ(t) = φ(ψ(t)). Given a differentiable function f (x), its gradient
is denoted by∇f (x). For a function of time x(t), sometimeswedrop
t for brevity if it is clear in context.

Consider an autonomous system:

ẋ(t) = f (x(t)), x(t0) = x0 (1)

where x : R → Rn is the system state, f : Rn
→ Rn is a

known function, and x0 ∈ Rn is the initial state. In general, the
discretizedmodel of this continuous-time system can be described
by the iterative equations:

x̂(tk+1) = f̂

x̂(tk)


(2a)

x̂(t0) = x0 (2b)

tk+1 = tk + ĝ

x̂(tk)


(2c)

where the functions f̂ and ĝ describe the iteration in the state and
the time, respectively, which are to be determined. The discrete-
time signal x̂(tk) is the state of this discrete-time model at tk.
Starting from x̂(t0), this model will generate two sequences: the
time sequence {tk}∞k=0 and the state sequence {x̂(tk)}∞k=0.

Once the discrete-time model is established, we can use differ-
ent interpolation methods to construct the states over (tk, tk+1)

Fig. 1. The state trajectories generated by the LAM and the continuous-time
system.

such as x̂(t) = h

x̂(tk), x̂(tk+1), t


for any t ∈ (tk, tk+1). Thus,

the discrete-time model (2) and the interpolation generate a
continuous-time trajectory x̂(t), which is expected to approximate
the actual state x(t) of the continuous-time system in (1).

The objective is to construct sporadic real-time models in the
form of (2) and develop guidelines on the quantization design that
ensure stability of the resulting model as well as its closeness to
the continuous-time system in (1), with the cost-efficient purpose.

Remark 2.1. Notice that the LAM is completely different from the
self-triggered feedback scheme (Anta & Tabuada, 2010; Wang &
Lemmon, 2009). Self-triggered control only needs the iteration
equation on time (Eq. (2c)), while the states are always sampled
from the plant. The signal x̂(tk) in the LAM is not the sampled state,
but the predicted state that is completely based on themodel itself.

3. Lebesgue approximation model

The basic idea of the LAM is to have iterations executed only
when the state is ‘‘significantly’’ different from the previous one.
The ‘‘significance’’ is measured by the threshold D(x), which is also
referred to the quantization size (Kofman & Junco, 2001). The LAM
is described as follows:

x̂(tk+1) = x̂(tk)+ D(x̂(tk)) ·
f

x̂(tk)

f 
x̂(tk)

 (3a)

x̂(t0) = x0 (3b)

tk+1 = tk +
D(x̂(tk))f 

x̂(tk)
 (3c)

where x̂(tk) is called the Lebesgue state and D : Rn
→ R+

represents the quantization size.
We consider linear interpolation to construct the states be-

tween x̂(tk) and x̂(tk+1): for any t ∈ (tk, tk+1),

x̂(t) = x̂(tk)+ f

x̂(tk)


· (t − tk). (4)

Fig. 1 shows the state trajectories generated by a scalar continuous-
time system (‘‘solid’’) and the related LAM (‘‘dashed’’)with uniform
quantization size D. Assume that at tk, x̂(tk) = x(tk). The next state
x̂(tk+1) is simply x̂(tk) + D. The inter-transition time tk+1 − tk is
based on the slope at x̂(tk). This iteration will generate a gap be-
tween x̂(tk+1) and x(tk+1) and this gap will be propagated into the
next iterations, whichmay possibly be amplified. Thus, it is impor-
tant to study stability of the LAMand how close it is comparedwith
the continuous-time system.

4. Equivalence to event-triggered systems

To show the properties of the LAM, it might be difficult to
directly analyze the model by itself. Alternatively, we build up
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