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necessary and Jensen inequality has been a most powerful inequality in the last few years. Recently, based
on Wirtinger inequality, an improved integral inequality, encompassing Jensen inequality, was proposed
and its application to the stability showed a quite improvement. In this paper, without using Wirtinger

inequality, a further improved integral inequality in the form of infinite series is derived, and, based on
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this, a delay-dependent stability condition in the form of LMI is derived. Finally, its contribution on the
stability criterion is shown by well-known two examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Time-delay is frequently encountered in many practical sys-
tems, and it may lead to the degradation of performance or even in-
stability. Therefore, the stability problem of time-delayed systems
has been one of the hot issue in last two decades (Gu, Kharitonov,
& Chen, 2003, and see references therein).

Let us consider the time-delayed linear systems

[k(t) = Ax(t) + Ax(t — d(t)), 1)
x(t) = ¢(t), Vt e[—h,0]

where x € R" is the state, ¢ is the initial condition, A, A; € R™"
are constant matrices, and the time delay satisfies

dit) < p. (2)

The stability problem is to find a less conservative condition guar-
anteeing the stability of the system (1) with the constraints (2).
To get a delay-dependent result in the form of LMI (Boyd, Ghaoiu,
Feron, & Balakrishnan, 1994), the Lyapunov-Krasovskii functional

0<d(t) <h,
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(LKF) has been widely used, where the double integral (or equiv-
alently, weighted single integral) term is essential since its time-
derivative contains the size of delay (Fridman & Shaked, 2002; Gu
et al., 2003). However, the time-derivative of double integral term
contains an integral term which has no equivalent LMI form unfor-
tunately. Therefore, it has been a main issue to derive a less con-
servative LMI form for the integral term.

The earlier work (Park, 1999) is a pioneer inequality, and it was
widely used before the Jensen inequality (Gu et al., 2003) expressed
as

b
Vo (w) = / w’ (s)Rw (s)ds

1
= mﬂg(w)RQO(w) = Vjensena (3)
wherea < b,R = RT > 0and 2y(w) = fab w(s)ds. The Jensen
inequality is a generalized version of Park (1999), and it has been
a most powerful tool in the last few years.
Also, the following inequality (Park, Ko, & Jeong, 2011)

1
X
h—ot] 0 >1|:X1 ST
~h

. Yae(0.h (4)
| ]
0 2 S X

o

makes it possible to get a stability result for the rapid change of
time-delay (especially when 12 > 1), where X; = X7, X, = XJ and

X, ST
I:sl X2:|>0'
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Recently, based on a Wirtinger inequality, Seuret and Gouais-
baut (2013) presented an analytically improved result that over-
comes the Jensen inequality in (3)

2
Vab(w) > V]ensen + mﬂl (w)R.(21 (U))
= Vseuret (5)

where £21(w) = fab (s — %)w(s)ds, and its adoption significantly
improves the stability criterion (Kwon, Park, Park, Lee, & Cha, 2014;
Seuret & Gouaisbaut, 2013).

Similarly, there is also an improvement of the discrete-time
version of Jensen inequality (Lam, Zhang, Chen, & Xu, 2015).

2. Further improvement of Jensen inequality

Note that the reduction of gap in the integral inequality is a key
to reduce the conservatism for the stability problem. Now, without
using a Wirtinger inequality, we give a further improved result in
the form of infinite series than the recent integral inequality of
Seuret et al. (2013) in (5).

Lemmal. Form=0,1,2,...,define

2m m—1
Vam(s) = (s— a;b) +Zamz (s—

Cl+b 2m+1 m—1 a+b 2i+1
1//Zm-o—l(s) = <5 - ) + bml ( )
2 =
i=0
with the assumption that, Vi=10,1,2,...,m — 1,
b b
/ Yom () Yai(s)ds = / Yom+1(8)Yair1(s)ds = 0. (6)
a a

Then, we have the following integral inequality in the form of infinite
series

o0

Vis() = 3 — @l (wRs(w) @)

i=0 F1

fab Yi(s)ds > 0and 2;(w) = fab Vi(s)w(s)ds.

Proof. Note that v/;(s) and Vi1 (s) are even and odd polynomial
WrIt s = ‘”" , respectively. So, f wzl(S)l/JZH_l(S)dS = 0,Vi,j.
By combimng 1t with the above orthogonality in (6), we have
b .,
[o wi$)¥i(s)ds =0, Vi 751
Now, letz(s) = Y0, + 5 Wi(9)$2i(w), then we get

where p; =

b
0 = [ T - 2o R - 2(6)1ds
b
= / {wT(s)Rw(s) — 27" (s)Rw (s) +zT(s)Rz(s)}ds
a b .
= V) =2 [ (3 Sno200) Ruds
a i=0 !
= [(3 Lnoam) W3 Luoam)s
a Vigo Pi =0 Di
® 1 b
= Vo) =23 el k([ i)

fa {Zp Y2 2] (WRRi(w) Jds

i=0

— Vi) =2~ 2] (R (w) + Y ]%piszf (WRLi(w)
i=0 F1 i=0 Fi
= Vap(w) — ) I}sz’ (w)RS2i(w).

i=0

which means (7). This completes the proof. O

Remark 1. In Lemma 1, the polynomials ¥;,,(s) and vom41(S)
contain the scalars a,,; and by, i = 0, 1, 2, ..., m— 1, respectively.
And these scalars are uniquely determined by (6) since (6) has
m algebraic equations for both ¥, (s) and V¥;,41(s). Here, some
¥i(s),i=0,1,2,3, are given:

b
m=0:ye(s) =1, Ws)—s—%
a+b
Ya(s) = (s— ! ) +an.
- a+b\? a+b
P3(s) = <S—T> +byo (5— > ),
b 2
h—
Y2()Yo(s)ds =0 — ayg = ! 12a) ,
where ab 30 — a)?
—a
Y3($)Y1(s)ds =0 —> byo = ————,
a 20
andpy = b—a,p = &2 p, = &0 py = LaT  asa
= P1= T P2 = g0 0 P3 = 3500 0
result, we have from (7)
180
Vap (W) > Vseurer + W-QZ (w)R2, (w)
2800
+ ﬁ.@ (u))R.Q3(U)) + (8)
zo

which shows an analytic improvement compared to the recent
result of Seuret et al. (2013) since R = RT > 0.

The following Corollary 1 is a special case of Lemma 1 with
w(s) = x(s) and k = 0, 1, 2, and it will be used in the proof of
next main result.

Corollary 1. Let a < b,R =R" > 0, then

V(%) < ! YT (a, b)RY,(a, b
- ah(x>_—m{ 7 (a. b)RYy(a. b)

+ 37 (a, b)RY(a, b) + 575 (a, b)RT>(a, b)] (9)

where Yo(a,b) = x(b) — x(a), Y1(a,b) = x(b) + x(a) — bZTa
] x(s)ds and T>(a, b) = x(b) — x(a) — T [2(s — “E0)x(s)ds.

Proof. Using ¥;(s),i =0, 1, 2 in Remark 1, we have

b
2 = / Vo(©x(s)ds = T(a, b),

b b—a
@) = / ©xe)ds = 2= %7, b),
i (b — a)?
6

b

200 = [ v = Ta(a.b).
a

and it is straightforward to get (9) from (8). So the details are

omitted. O

The following Lemma 2 is a result that the quadratic function is
negative on a closed interval [0, h] irrespective of its convexity or
concavity, and it will be used in the proof of next main result.
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