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a b s t r a c t

In this paper an analytical method for studying the free response of continuous vibrating
systems with distributed and possibly non-proportional viscous damping is proposed.
The most general case the method refers to is a piece-wise homogeneous Euler-Bernoulli
beam, with lumped elastic and inertial elements and subjected to tensile load. The practical
application of the method to a contact wire is also presented, aiming at analysing its
dynamic response. Contact wires are typically used in the overhead contact line of the rail-
way electrification system but, despite their wide diffusion, their damping properties have
not been exhaustively studied. This study aims at experimentally validate the analytical
method to define a reliable dynamic model of overhead contact lines.
The wire is modelled as an axially loaded homogeneous beam, with lumped elastic and

inertial elements (i.e. droppers and clamps). A state-form expansion applied in conjunction
with a transfer matrix technique is adopted to extract the eigenvalues and to express the
eigenfunctions in analytical form. Experimental measurements have been carried out in
the Dynamics & Identification Research Group (DIRG) laboratory of Politecnico di Torino
considering two different damping scenarios, and the modal properties of the test bench
have been extracted by using a linear subspace identification technique. The damping dis-
tribution is finally investigated starting from the experimental data, in order to seek for the
most appropriate damping model.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Contact wires are widely used in the overhead contact lines of railway electrification systems, and typically consist of long
and flexible copper cables, with a particular cross section to allow the connection with the droppers. An extensive literature
has been produced about the characterization of contact wires and overhead contact lines. Indeed, tests on the field are quite
difficult to be performed and a proper model is fundamental in order to correctly simulate the dynamic evolution of the sys-
tem. In [1] general indications about the modeling of an overhead contact line are presented, and a comparison between a
string model and a Euler-Bernoulli beam model is carried out. The latter proved to be more effective, even because its dis-
persive wave characteristics better represents the behavior of the contact wire [2]. In [3] an analytical study on the effects of
a moving force, representing the pantograph, has been conducted adopting a beam model. In spite of the high number of
studies on the dynamics of contact wires, their damping properties have been not exhaustively investigated. Overhead con-
tact lines are usually considered low-damped systems, and in many cases damping is suggested to be negligible at all [4].
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This is a gross approximation that can lead to unreliable results, especially when adopting a finite element model [5]. In par-
ticular, the influence of damping has been studied in [6,7], showing its considerable effects on the quality of the current col-
lection for high speed trains. Recently, a benchmark has been proposed [8] to model the pantograph-catenary interaction.
Proportional structural damping is considered in this study with coefficients a = 0.0125 s�1 , b = 10�4 s obtained from
measurements on the Italian high-speed catenary. In [9] the identification of damping of Norwegian overhead contact lines
has been performed under different operational conditions. In [10] experimental measurements of the damping ratios have
been conducted, leading to define a range from 0.01 to 0.04.

In this paper, a twofold purpose is chased: presenting an analytical method for better investigating the damping distri-
bution and using experimental measurements to validate the predictions of the model.

The presented method can generally handle several kinds of continuous vibrating systems with either proportional and
non-proportional damping. It is based on [11,12], and uses a partition of the continuous system in homogeneous substruc-
tures (or segments) in conjunction with a transfer matrix technique. In the particular case of overhead contact lines, each
section corresponds to the distance between two consecutive droppers, the latter being modeled as lumped elastic elements.
A key feature of overhead contact lines is the tensile force acting on both contact wire and messenger wire, thus the refer-
ence method is here extended to account for an axial load across the segments of the considered structure. The proposed
approach leads to an easy implementation and presents a high computational efficiency, due to the invariance of the matrix
dimensions with respect to the number of segments considered. Experimental measurements have also been performed at
the DIRG laboratory of the Politecnico di Torino considering two different damping scenarios. A linear subspace identification
technique [13–15] is used to extract the modal parameters from the acquired data, and a model updating process is imple-
mented to find the best-fit between experimental results and analytical predictions. The damping distribution is finally ana-
lyzed combining information from both the experimental outcomes and the presented analytic model.

2. Modal analysis of continuous systems with viscous generalized damping and tensile force

The dynamic behavior of a continuous system with viscous generalized damping can be described, recalling [11], by the
following equation of motion:
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where M, C, K, are linear homogeneous differential operators and are referred to as mass, damping and stiffness operator
respectively, f is the external force density, w and x are the displacement and the spatial coordinate in a domain of extension
D, and t is time.

The differential eigenvalue problem associated with Eq. (1) has been already solved in [11] considering a piece-wise con-
stant Euler-Bernoulli beam with both internal and external damping distribution. In this case, the mass and the stiffness
operator are:
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wheremðxÞ is the mass per unit length of the beam and kðxÞ ¼ EIðxÞ is the bending stiffness, E being the Young’s Modulus and
I the area moment of inertia.

The damping operator can be a general external distributed viscous damping function C ¼ cexðxÞ or can be expressed
according to the Kelvin-Voigt model [16] as:
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In particular, damping is said to be proportional when the damping operator can be expressed as a linear combination of
the mass operator and the stiffness operator.

According to the equations above, considering both an external and an internal damping distribution, the equation of a
Euler-Bernoulli beam in bending vibration under a distributed transverse force is obtained.
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where f ¼ f ðx; tÞ is the transverse force andw ¼ wðx; tÞ is the transverse displacement. If a tensile load is applied to the beam,
the equation is modified in this paper to include the axial force T (positive in tension), as follows:
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