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a b s t r a c t

In this paper we develop methods for evaluating uncertainties in the frequency response of a dynami-
cal system based on finitely many input–output data points. We extend the ‘‘Leave-out Sign-dominant
Correlation Regions’’ (LSCR) algorithm to deliver confidence regions with a guaranteed probability for the
frequency response atmultiple frequencies, andwe introduce a computationally efficient scheme that en-
ables the confidence regions to be constructed frequency by frequency. Simulation examples illustrating
the usefulness of the developed algorithm are provided.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In system identification, providing a description of the un-
certainties associated with the nominal system model is as im-
portant as obtaining the nominal model itself, especially for the
synthesis of robust controllers. A popular technique for evaluat-
ing the model quality is based on constructing confidence regions
using asymptotic system identification theory. This is a mature ap-
proach and the confidence regions can be computed relatively eas-
ily (see Ljung, 1999). However, in some cases using asymptotic
theorymay lead to unreliable results (seeGaratti, Campi, & Bittanti,
2004) when applied to a finite number of data points.

In this paper, we consider amethod for constructing confidence
regions based on finitely many data points as, e.g., considered in
Bayard (1993), Campi andWeyer (2005), denDekker, Bombois, and
Van den Hof (2008), Goodwin, Gevers, and Ninnes (1992) and Hjal-
marsson and Ninness (2006). Unlike methods based on asymp-
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totic theory, the developed method generates guaranteed confi-
dence regions for a finite number of data points. The developed
approach is based on the LSCR method introduced in Campi and
Weyer (2005) (see also Campi, Ko, & Weyer, 2009 and Campi &
Weyer, 2010), and it is extended to produce guaranteed confidence
regions for the frequency response of a dynamical system. As a fi-
nite number of data points does not provide any information about
the tail of the impulse response, prior information, such as expo-
nentially decaying bounds, is introduced and incorporated in the
algorithm in order to deal with tail effects. Moreover, an experi-
mental scheme is derived that allows the confidence regions to be
constructed separately frequency by frequency. This reduces the
computational burden significantly.

In the next subsection we give simple preview examples that
illustrate the main ideas of the proposed approach. Then, in Sec-
tion 2, the procedure used in the preview examples is generalized
to construct simultaneous confidence regions when the system is
excited by a multi-sine input signal. In Section 3 an experimental
scheme and an algorithm that allow the confidence regions to be
constructed at low computational costs are introduced. Two simu-
lation examples demonstrating the usefulness of the proposed ap-
proach are given in Section 4.

1.1. Preview examples

In this section we first introduce a simple example illustrating
the main ideas of LSCR by generating a confidence interval for the
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Fig. 1. Observed signal.

amplitude of a sinusoid, before moving on to the construction of a
confidence set for the frequency response of a dynamical system at
a given frequency. For further descriptions of the main ideas in the
LSCR algorithm, the reader is referred to Campi and Weyer (2006)
and Section 1.2 of Campi et al. (2009).

1.1.1. Confidence interval for the amplitude of a sinusoid
The signal of interest is a sinusoid observed in noise

yt = A0 cosωt + nt .

We have observations yt , t = 1, . . . ,N = 60. nt is a sequence
of zero mean independent random variables, symmetrically
distributed about zero. The frequency ω = 0.2 is known, but the
amplitude A0 is unknown. The observed signal is shown in Fig. 1.
We wish to construct a confidence interval for A0. Given the signal
model

ŷt(A) = A cosωt,

we compute the observation error

εt(A) = yt − ŷt(A) = (A0
− A) cosωt + nt ,

and correlate it with cosωt , which gives

ft(A) = εt(A) cosωt = (A0
− A) cos2 ωt + nt cosωt.

We note that E{
N

t=1 ft(A)} = 0 for A = A0, and is different from
zero for A ≠ A0. The idea is now to use random subsamples of
ft(A) to form empirical estimates of the correlation between the
observation error and cosωt . To this end we compute M = 20
empirical subsample estimates

gi(A) =

N
t=1

hi,t ft(A) =

N
t=1

hi,tεt(A) cosωt, i = 0, 1, . . . ,M − 1,

where hi,t are independent and identically distributed (i.i.d.)
random variables taking on the values 0 and 1 with probability 1/2
each. The exception is h0,t which is equal to zero for all t , and hence
g0(A) ≡ 0. This means that hi,t determines whether sample t is
used when gi(A) is computed.

The M − 1 non-zero gi(A) functions are shown in Fig. 2.
Corresponding to the true amplitude A0, gi(A0) is a sum of zero
mean random variables. It is therefore unlikely that nearly all of
the gi(A) functions are positive or negative for A = A0, and hence
we exclude those values of A where all the gi(A) functions take on
positive or negative values. Thus, the confidence interval marked
with a thick line in Fig. 2 is obtained by keeping those values of
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Fig. 2. gi(A) functions together with the confidence interval (thick line) and the
true amplitude (⋆).

A for at which at least q = 1 of the gi(A) functions are positive
and at least q = 1 are negative. It is shown in Theorem 1 that
the constructed confidence interval contains the true amplitude
(A0

= 1) with probability 1 − 2q/M = 0.9.
Next we move onto a more realistic situation where also the

phase is unknown and transient effects need to be taken into
account.

1.1.2. Confidence set for frequency response
Suppose that the true continuous-time system is given by

y(t) =


∞

0
g0(τ )u(t − τ)dτ + v(t), (1)

where g0(τ ) is the impulse response function, and v(t) is additive
noise. The transfer function G0(s) of the system (1) is the Laplace
transform of g0(τ ) given by

G0(s) =


∞

0
g0(t)e−stdt (2)

and in this example it is given by

G0(s) =
2.5

s + 2.5
. (3)

This information about the true system is given for completeness
of description but is unknown to the user.

The input to the system is a sinusoid

u(t) =


cos(t), t ≥ 0
0, t < 0. (4)

The output is given by

y(t) =

 t

0
g0(τ ) cos(t − τ)dτ + v(t)

= Re


∞

0
g0(τ )e−jτdτ ejt −


∞

t
g0(τ )e−jτdτ ejt


+ v(t)

= Re

G0(j) · ejt −


∞

t
g0(τ )e−jτdτ · ejt


+ v(t)

= a0 cos t − b0 sin t + ȳ(t)+ v(t),

where a0 , Re{G0(j · 1)}, b0 , Im{G0(j · 1)} and ȳ(t) ,
−Re{


∞

t g0(τ )e−jτdτ · ejt} represents the transient effects due to
initial conditions.
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