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a b s t r a c t

This paper considers the problem of identifiability and parameter estimation of single-input–single-
output, linear, time-invariant, stable, continuous-time systems under irregular and random sampling
schemes. Conditions for system identifiability are established under inputs of exponential polynomial
types and a tight bound on sampling density. Identification algorithms of Gauss–Newton iterative types
are developed to generate convergent estimates. When the sampled output is corrupted by observation
noises, input design, sampling times, and convergent algorithms are intertwined. Persistent excitation
(PE) conditions for strongly convergent algorithms are derived. Unlike the traditional identification,
the PE conditions under irregular and random sampling involve both sampling times and input values.
Under the given PE conditions, iterative and recursive algorithms are developed to estimate the original
continuous-time system parameters. The corresponding convergence results are obtained. Several
simulation examples are provided to verify the theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

System identification for continuous-time systems via sampling
is a classical field (Åström & Wittenmark, 1997; Chen & Francis,
1995; Ding, Qiu, & Chen, 2009; Phillips & Nagle, 2007). It is
well understood that to identify a time-invariant continuous-time
system, one may derive its time-invariant discrete-time sampled
system with periodic sampling and the zero-order hold; and
hence identification of the original continuous-time system is
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converted to that of its sampled system (Åström & Wittenmark,
1997; Garnier & Wang, 2008; Ljung, 1999; Marelli & Fu, 2010). A
sufficient condition to guarantee the one-to-onemapping from the
coefficients of the sampled system to the original system is that
the sampling period is less than an upper bound related to the
imaginary parts of the poles (Ding et al., 2009). This equivalence
implies that the existing algorithms for discrete-time systems
suffice for identification of the original continuous-time system.
Furthermore, it was shown in Ding et al. (2009) that multi-
rate sampling schemes can be used to create such a one-to-one
mapping when the sampling rate is slower than this bound. Under
such a multi-rate sampling system, the sampled system of a linear
time-invariant system remains linear and time invariant with a
higher order.

In practical systems, especially networked systems, periodic
sampling is no longer valid. Examples are abundant, such as com-
munication channels with packet loss and unpredictable round-
trip times. Irregular sampling time sequences may be generated
passively due to event-triggered sampling (Åström & Bernhards-
son, 1999), low-resolution signal quantization (Wang, Yin, Zhang,
& Zhao, 2010), activities by input control or threshold adaptation
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under binary-valued sensors (Wang, Li, Yin, Guo, & Xu, 2011), or
PWM (Pulse Width Modulation)-based sampling (Wang, Feng, &
Yin, 2013). Under irregular or random sampling, the sampled sys-
tem of a linear time-invariant system becomes time-varying, for
which system conversion is complicated and computational com-
plexity is much higher. When sampling is slower, irregular, or ran-
dom, system identification formulation, identifiability, algorithms,
accuracy, and convergence will be fundamentally impacted. This
paper will explore related issues in this paradigm.

In Johansson (2010), the original differential equation is first
converted to an algebra equation with respect to time by using
filtered input and output signals. Then the parameters of the
algebra equation are estimated at the irregular sampling points,
and the original system parameters are recovered by a one-
to-one mapping from the estimated parameters. One possible
methodology is to identify the original system parameters without
conversion to its sampled system (Gillberg & Ljung, 2010;
Larsson & Söderström, 2002; Marelli & Fu, 2010; Vajda, Valko, &
Godfrey, 1987). The parameters are directly identified by using
a continuous-time frequency domain identification method in
Gillberg and Ljung (2010). Similar to its discrete-time counterpart,
the continuous-time system can also be expressed by a linear
regression equation in a differential operator form (Larsson &
Söderström, 2002), in which the regressor involves input and
output signals and their derivatives. Since the derivatives are
unavailable under sampled data, higher-order derivatives of the
input and output signals are approximated by their related
differences (Larsson & Söderström, 2002), introducing errors
as a consequence. The resulting discrete-time system is then
identified by batch or recursive algorithms (Ljung, 1999; Ljung &
Vicino, 2005). To reduce approximation errors, fast sampling is
required. An instrumental variable approach is used to enhance
estimation accuracy for continuous-time autoregressive processes
in Mossberg (2008), which demonstrates improved computational
efficiency in comparison to the least squares approach (Larsson,
Mossberg, & Soderstrom, 2007).

Synchronization between the input sampling and output sam-
pling is also a significant factor. Typical schemes for the indirect
method assume that the input and output are sampled at the same
sampling points (Larsson & Söderström, 2002; Yuz, Alfaro, Agüero,
& Goodwin, 2011). The estimation method in Yuz et al. (2011) rep-
resents the original continuous-time state space model by an in-
cremental approximation under nonuniform but fast sampling and
employs the maximum likelihood approach. Zhu, Telkamp, Wang,
and Fu (2009) propose a two-time scale sampling scheme: fast
uniform input sampling, but slow and irregular output sampling,
with assumption that the output sampling time is a multiple of
the input sampling time. Under an output error structure, the sys-
tem parameters are then estimated by minimizing a suitable loss
function. In contrast, in Gillberg and Ljung (2010) the input is a
uniformly spaced piece-wise constant function (zero-order hold),
while the output is sampled irregularly. The main technique is to
use B-spline approximation to achieve uniformly distributed knots
from the non-uniformly sampled output. The method in Gillberg
and Ljung (2010) is restricted to the noise-free sampled output
and its estimation accuracy enhancement requires fast sampling.
Despite extensive research effort in this area, some fundamental
questions remain un-answered: (1) How fast and underwhat types
of sampling schemes, is the continuous-time system identifiable?
(2)What types of inputswill imply system identifiability? (3)What
modifications must be made to identification algorithms? (4) To
achieve convergence, how should the input be designed?

This paper investigates these questions from a new angle. In-
stead of focusing on parametermappings between the continuous-
time system and its sampled system, we view irregularly or
randomly sampled values as the available information set and

study identifiability, identification algorithms, and input
design directly on the original parameters. The main contributions
of this paper are in the following aspects. (1) We show that under
any inputs of exponential polynomial types, the continuous-time
system is identifiable if the sampling points are sufficiently dense
in a given time interval. The bound on the density of the sampling
points is tight, revealing an interesting connection, in terms of
identification information complexity, to Shannon’s sampling the-
orem for signal reconstruction (Proakis &Manolakis, 2007) and our
recent results on state estimation (Wang et al., 2011). Note that the
input used in this paper is continuous, while the existing literature
(Ding et al., 2009; Gillberg & Ljung, 2010) commonly uses piece-
wise constant inputs by zero-order hold. (2) Robustness of sys-
tem identifiability under a given sampling density is established.
(3) Under noise-free observations, a convergent iterative algorithm
is introduced, which is valid for any input signals satisfying certain
gradient conditions. (4) Under noisy observations, suitable iden-
tification algorithms are proposed, which are shown to converge
strongly and carry properties of the CLT (central limit theorem)
types if certain ergodicity conditions are satisfied. (5) Persistent
excitation (PE) conditions are derived that ensure convergence of
the developed algorithms. Departing from the traditional PE condi-
tions that rely only on input values, it is shown that under irregular
or random sampling, both sampling time sequences and the input
values impact on convergence. These results provide guidance for
input design in identification experiments. (6) Consistency of the
algorithms is proved without requiring fast sampling.

The rest of the paper is arranged as follows. The system setting
and several key properties are presented in Section 2. System iden-
tifiability is investigated in Section 3. The parameter estimation
algorithms and their convergence properties under noise-free
observation are discussed in Section 4. When observations are
noise corrupted, identification algorithms are significantly differ-
ent from noise-free cases. Two kinds of estimation algorithms (it-
erative algorithms and recursive algorithms) are introduced and
their convergence conditions are established in Section 5. Section 6
is focused on input design problems. The related persistent excita-
tion conditions are obtained. In Section 7 some numerical exam-
ples are given to verify the effectiveness of the proposed algorithms
of this paper. Section 8 concludes the paper with some further re-
marks. The main proofs of the assertions in the paper are placed in
the Appendix.

2. Preliminaries

This sectiondescribes the systemsetting and establishes several
important properties to be used in the subsequent sections.

2.1. Systems

We are concerned with identification of a single-input–single-
output, linear, time-invariant, stable, finite dimensional system
in the continuous-time domain, represented by a strictly proper
transfer function

G(s) =
b1sn−1

+ · · · + bn−1s + bn
sn + a1sn−1 + · · · + an−1s + an

,
b(s)
a(s)

, (1)

where a(s) is stable, i.e., all the roots of a(s) lie on the open left-
half complex plane; a(s) and b(s) are coprime, i.e., they do not have
common roots. The impulse response of G(s) is denoted by g(t) =

L−1(G(s)), where L−1 is the inverse Laplace transform. Let the
system parameters be expressed as θ = [a1, . . . , an, b1, . . . , bn]′.
We use G(s, θ) and g(t, θ) to indicate their dependence on the
parameters. R and C are the fields of real and complex numbers,
respectively.
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