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a b s t r a c t

Invertibility is an interesting and classical control-theoretic problem. However, there has been no result
for the invertibility of Boolean control networks (BCNs) so far. We first adopt the theory of symbolic
dynamics to characterize it. First, it is shown that a BCN generates a continuous mapping from the space
of input trajectories to the space of output trajectories. Based on it, the concepts of nonsingularity and
invertibility of BCNs are first defined as the injectivity and bijectivity of themapping, respectively. Second,
combined symbolic dynamics with the semi-tensor product (STP) of matrices, an equivalent test criterion
for invertibility is given; easily computable algorithms to construct the inverse BCN for an invertible BCN
are presented; and it is proved that invertibility remains invariant under coordinate transformations.
Third, an equivalent test criterion for nonsingularity is given via defining a novel directed graph that
is called weighted pair graph. Lastly, as an application of invertibility to systems biology, we prove that
the BCN model proposed in Fauré et al. (2006) is not invertible, i.e., we prove that arbitrarily controlling
mammalian cell cycles is unfeasible at the theoretical level.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Boolean network (BN), introduced first in Kauffman (1969),
and then developed by Akutsu, Miyano, and Kuhara (2000) and Al-
bert and Barabasi (2000), etc. is a simple and effective model to
describe the behavior and relationships of cells, proteins, DNA and
RNA in a biological system, named genetic regulatory networks
(GRNs) (cf. Ideker, Galitski, & Hood, 2001, Kitano, 2002). Partic-
ularly in Ideker et al. (2001), exogenous perturbation and regu-
lation to biological systems were described as ‘‘control’’, i.e., the
concept of Boolean control networks (BCNs) came up. A BN/BCN is
itself simple but reflects the local dynamical interactions of in-
ternal nodes (and external nodes). Hence recently, the dynamical
properties of BNs/BCNs were widely investigated to understand
the behavior of GRNs (cf. Akutsu, Hayashida, Ching, & Ng, 2007,
Akutsu et al., 2000, Albert & Barabasi, 2000, Cheng, Qi, & Li, 2011).
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Like the controllability and observability of BCNs (cf. Cheng&Qi,
2009, Fornasini & Valcher, 2013, Laschov, Margaliot, & Even, 2013,
Zhang&Zhang, 2014, Zhao, Qi, & Cheng, 2010), invertibility is an in-
teresting topic in the control-theoretic field. Moreover, in systems
biology, the invertibility of BCNs is of extraordinary biological sig-
nificance, as shown by taking a motivating example.

In Fauré, Naldi, Chaouiya, and Thieffry (2006), the dynamics of
the core network regulating the mammalian cell cycle was for-
mulated as a BCN model as shown in (1). The cell cycle involves
a succession of molecular events leading to the reproduction of
the genome of a cell (Synthesis phase) and its division into two
daughter cells (Mitosis phase). The Synthesis and Mitosis phases
are preceded by two gap phases, called G1 and G2 respectively,
in which RNA and proteins are synthesized. Mammalian cell di-
vision is tightly controlled, for it must be coordinated with the
overall growth of the organism, as well as answer specific needs,
such as wound healing. This coordination is achieved through
extra-cellular positive and negative signals whose balance decides
whether a cell will divide or remain in a resting state (a fifth phase,
G0). The positive signals or growth factors ultimately elicit the ac-
tivation of protein CycD in the cell. Thus CycD is represented as the
control input (Fauré et al., 2006).

The BCN model (1) consists of one input node, CycD, and
nine state nodes (proteins), Rb, E2F, CycE, CycA, p27, Cdc20,
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Cdh1, UbcH10, CycB, which are represented as ten Boolean vari-
ables u, x1, x2, x3, x4, x5, x6, x7, x8, x9, respectively, showing their
activation and inactivation. Protein Cdc20 is responsible for the
metaphase-to-anaphase transition: it activates separase through
the destruction of its inhibitor securin; this activation elicits the
cleavage of the cohesin complexes that maintain the cohesion
between the sister chromatids, thus leading to their separation.
Hence Cdc20 plays a central role in the division of cells (Fauré et al.,
2006).

x1(t + 1) = (ū(t) ∧ x̄3(t) ∧ x̄4(t) ∧ x̄9(t))
∨(x5(t) ∧ ū(t) ∧ x̄9(t)),

x2(t + 1) = (x̄1(t) ∧ x̄4(t) ∧ x̄9(t)) ∨ (x5(t) ∧ x̄1(t) ∧ x̄9(t)),
x3(t + 1) = x2(t) ∧ x̄1(t),

x4(t + 1) = (x2(t) ∧ x̄1(t) ∧ x̄6(t) ∧ (x7(t) ∧ x8(t)))

∨(x4(t) ∧ x̄1(t) ∧ x̄6(t) ∧ (x7(t) ∧ x8(t))),

x5(t + 1) = (ū(t) ∧ x̄3(t) ∧ x̄4(t) ∧ x̄9(t))

∨(x5(t) ∧ (x3(t) ∧ x4(t)) ∧ ū(t) ∧ x̄9(t)),
x6(t + 1) = x9(t),
x7(t + 1) = (x̄4(t) ∧ x̄9(t)) ∨ x6(t) ∨ (x5(t) ∧ x̄9(t)),
x8(t + 1) = x̄7(t) ∨ (x7(t) ∧ x8(t) ∧ (x6(t) ∨ x4(t) ∨ x9(t))),
x9(t + 1) = x̄6(t) ∧ x̄7(t),

(1)

where ·̄, ∧, ∨ denote logical operators: negation, conjunction and
disjunction, respectively; t denotes time steps 0, 1, 2 . . . ; u and xi
are Boolean variables, i = 1, . . . , 9.

Then if at any time step, both activation and inactivation of
Cdc20 can be achieved, one may control the division of cells. Since
CycD is the control input of the BCN model, a natural idea is de-
signing a CycD sequence to obtain any Cdc20 sequence. If this idea
is reconsidered in a backward way, that is, determining the CycD
sequence by using a Cdc20 sequence, and Cdc20 is regarded as
the output node, then it becomes the invertibility problem in the
control-theoretic field. Based on this idea, a natural problemarises:

Problem 1. Can one obtain any Cdc20 sequence by designing a
CycD sequence?

In the sequel, we aim at answering this question.

Remark 1.1. Note that we formulate the control of the mam-
malian cell cycle as invertibility. Why not controllability? First,
BCN (1) is not controllable (see Section 4). Second, controllability
involves driving a state (nine proteins) to another state at some
future time step, while it is powerless to obtain a target output
sequence. While obtaining a target output sequence is just what
we want.

The invertibility problem has been studied extensively for
linear systems (cf. Brockett & Mesarovic, 1965, Morse & Wonham,
1971, Moylan, 1977, Sain & Massey, 1969, Silverman, 1969, etc.),
nonlinear systems (cf. Hirschorn, 1979, Nijmeijer, 1982, Singh,
1982, etc.), and switched systems (cf. Tanwani & Liberzon, 2010,
Vu & Liberzon, 2008, etc.). However, to the best of our knowledge,
there has been no result on the invertibility problem of BCNs
so far. The invertibility of linear/nonlinear systems are usually
defined via the theories of frequency domain, linear spaces or
differential geometry. For BCNs, the updating functions of nodes
are essentially polynomials defined on linear spaces (D, Dn) with
module-2 addition and multiplication, where D = {0, 1}. Since
BCNs do not have frequency domain structure, (D, Dn) is not
locally Euclidean, and the updating functions are nonlinear, the
concepts of invertibility of linear/nonlinear systems cannot be
directly defined for BCNs. As a result, the approaches of dealing

with the invertibility of linear/nonlinear systems cannot bedirectly
used to deal with the invertibility of BCNs either.

Cellular automata are a type of symbolic dynamical systems,
and have applications in computability theory, computational
mathematics, physics, theoretical biology, cryptology, etc. A com-
plete survey is referred to Kari (2005). Roughly speaking, a cellular
automaton can be seen as a regular arrangement of countably in-
finitely many copies of a BCN. So the topological structure of cel-
lular automata is much more complex than that of BCNs. Recently
in Kari and Zhang (2013), an open problem on the chaos theory of
cellular automata was solved. Since the configuration space of a 1-
dimensional cellular automaton is topologically equivalent to the
space of input trajectories of a BCN (details are seen in Section 2.2),
we can attempt to use the theory of symbolic dynamics to charac-
terize the invertibility of BCNs.

After trying the above idea, we find that the theory of symbolic
dynamics is a suitable tool to deal with the invertibility of BCNs. By
using the theory of symbolic dynamics, we obtain an equivalent
test criterion for the invertibility of BCNs. Also by using the semi-
tensor product (STP) of matrices, a natural generalization of the
conventional matrix product, we give matrix representations for
the obtained results.

Besides, to make a further theoretical attempt, we investigate a
generalized invertibility whichwe call nonsingularity. Both invert-
ibility and nonsingularity are in category of invertibility problems.

The rest of this paper is organized as follows: Section 2 intro-
duces necessary preliminaries about STP, BCNswith their algebraic
forms, and symbolic dynamics. Section 3 investigates the invert-
ibility problem of BCNs. Section 4 shows that the foregoing BCN
model of the core network regulating the mammalian cell cycle is
not invertible. A brief conclusion ends this paper in Section 5.

2. Preliminaries

2.1. Boolean control networks and their algebraic forms based on the
STP of matrices

Since the framework of STP is used in this paper, somenotations
about logic and STP are introduced.

• R: the set of all real numbers
• Z: the set of all integers
• Z+: the set of all positive integers
• N: the set of all natural numbers
• Rm×n: the set of allm × n real matrices
• [i, j]: the set of consecutive integers i, i + 1, . . . , j
• In: the n × n identity matrix
• AT : the transpose of a matrix A
• D: the set {0, 1}
• δi

n: the ith column of the identity matrix In
• 1k:

k
i=1 δi

k
• ∆n: the set {δ1

n, . . . , δ
n
n} (∆2 := ∆)

• δn[i1, . . . , is]: the logical matrix [δ
i1
n , . . . , δis

n ] (i1, . . . , is ∈

{1, 2, . . . , n})
• Ln×s: the set of all n × s logical matrices, i.e., {δn[i1, . . . , is]|

i1, . . . , is ∈ {1, 2, . . . , n}}
• A > 0: each entry of matrix A is positive
• Rowi(A) (resp. Coli(A)): the ith row (resp. column) of matrix A

• A1 ⊕ A2 ⊕ · · · ⊕ An :


A1 0 · · · 0
0 A2 · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · An


• diagn(A) = ⊕

n
i=1 A.

Definition 2.1 (Cheng et al., 2011). Let A ∈ Rm×n, B ∈ Rp×q, and
α = lcm(n, p) be the least commonmultiple of n and p. The STP of
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