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a b s t r a c t

The identification of polynomial Nonlinear Autoregressive [Moving Average] models with eXogenous
variables (NAR[MA]X) is typically carried out with incremental model building techniques that
progressively select the terms to include in themodel. TheModel Structure Selection (MSS) turns out to be
the hardest task of the identification process due to the difficulty of correctly evaluating the importance
of a generic term. As a result, classical MSS methods sometimes yield unsatisfactory models, that are
unreliable over long-range prediction horizons. The MSS problem is here recast into a probabilistic
framework based on which a randomized algorithm for MSS is derived, denoted RaMSS. The method
introduces a tentative probability distribution over models and progressively updates it by extracting
useful information on the importance of each term from sampledmodel structures. The proposedmethod
is validated over models with different characteristics by means of Monte Carlo simulations, which show
its advantages over classical and competitor probabilistic MSS methods in terms of both reliability and
computational efficiency.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

System identification is the process of building a mathematical
model of a dynamical system from input–output data (Söderström
&Stoica, 1989). In particular, the black-box identification of nonlin-
ear systems is a singularly difficult and challenging problem, since
it amounts to solving an optimization problem with a mixed com-
binatorial (model structure selection) and continuous (parameter
estimation) nature, (Billings, 2013; Hong et al., 2008; Sjöberg et al.,
1995).

We are here mainly concerned with recursive input/output
(I/O) models of the Nonlinear Autoregressive (Moving Average)
with eXogenous variables (NAR[MA]X) class, (Leontaritis &Billings,
1985), where the current value of the system output is obtained as
a nonlinear functional expansion of lagged input and output (and
possibly noise) terms. Polynomial NARX/NARMAX models have
earned widespread interest in view of their flexibility and rep-
resentation capabilities, and several applications are documented
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(see, e.g., Aguirre, Donoso-Garcia, & Santos-Filho, 2000, Boaghe,
Billings, Li, Fleming, & Liu, 2002, Chiras, Evans, & Rees, 2001, Leva &
Piroddi, 2002, Loh & Duh, 1996, Palumbo & Piroddi, 2000, Piroddi,
Farina, & Lovera, 2012, Pottmann, Unbehauen, & Seborg, 1993,
Spinelli, Piroddi, & Li, 2004). Various identification algorithms have
been proposed in the literature for NARX/NARMAXmodels, mainly
based on the Prediction Error Minimization (PEM) framework for
parameter estimation, which is in fact computationally convenient
in view of the linear-in-the-parameters structure of themodel. The
main difficulty addressed by such algorithms is the selection of an
appropriate model structure, considering that functional approxi-
mation using families of basis functions often leads to an exponen-
tial increase in the number of candidate model structures (curse of
dimensionality), a critical issue of polynomial expansions in par-
ticular.

Classical model selection techniques based on information
criteria, such as the AIC (Akaike Information Criterion), the BIC
(Bayesian Information Criterion), and similar indices, appear to be
hardly applicable in the nonlinear framework. Essentially, these
indices weigh the model accuracy against the model size (number
of parameters) and are used in the linear framework to estimate
the correct model size. In the nonlinear context, no simple relation
between model size and accuracy can be established, because one
can construct many models of the same size with very different
regressors and these can have quite different performances. As
a result, these criteria cannot be used to derive indications on
whether to accept or discard a specific term (Chen, Hong, & Harris,
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2003; Palumbo & Piroddi, 2000). Regularization criteria like the
Least Absolute Shrinkage Selection Operator (LASSO) operate in
a similar direction by penalizing the model size in the model
identification process. As such they are effective in reducing the
model size, but not necessarily in the more difficult task of
selecting the appropriate model structure (Bonin, Seghezza, &
Piroddi, 2010).

An efficient method for tackling the Model Structure Selection
(MSS) task for NARX/NARMAX models was first suggested in Ko-
renberg, Billings, Liu, and McIlroy (1988), based on an incremental
model building procedure (forward regression). In detail, at each al-
gorithm iteration a new term is included in the model based on an
importance index, the Error Reduction Ratio (ERR), which evalu-
ates the local accuracy improvement that can be gained by adding
the term to the current model. The method also exploits Orthogo-
nal Least Squares (OLS) to decouple the estimation of the various
regressors. Accordingly, it is denoted Forward Regression Orthog-
onal Estimator (FROE). Several variants of this method have been
introduced in the literature using both forward and backward re-
gression schemes (see, e.g., Bonin et al., 2010, Billings, Chen, &
Korenberg, 1989, Farina & Piroddi, 2012, Guo, Guo, Billings, &
Wei, 2015, Haber & Unbehauen, 1990, Hong et al., 2008, Li, Peng,
& Irwin, 2005, Mao & Billings, 1999, Piroddi & Spinelli, 2003 and
Wei & Billings, 2008). The combinatorial optimization performed
by the FROE in the space of all possible models follows a greedy
scheme, so that there is no guarantee of convergence to the global
minimum. Several other drawbacks, that may ultimately prevent
the convergence towards the correctmodel, have beenpointed out,
e.g., in Aguirre and Billings (1995), Billings and Aguirre (1995) and
Piroddi and Spinelli (2003). They are essentially related to the inad-
equacy of the ERR index to express in an absolute way the impor-
tance of a regressor. Indeed, such measure depends on the specific
model to which the regressor is to be added. Notice also that the
PEM paradigm guarantees the unbiasedness of the parameter es-
timates only in ideal conditions, where the system is persistently
excited and themodel structure (including the disturbancemodel)
exactlymatches that of the target system, a conditionwhich is typ-
ically not met in the model building process, precisely because the
model is constructed iteratively.

Recently, some novel approaches have been introduced to ad-
dress the nonlinear identification problem, based on randomized
algorithms (Tempo, Calafiore, & Dabbene, 2004). An algorithm
based on the Expectation Maximization (EM) approach is pre-
sented in Baldacchino, Anderson, and Kadirkamanathan (2012),
that employs the particle filter to handle nonlinearities and jointly
perform MSS and parameter estimation. In Baldacchino, Ander-
son, and Kadirkamanathan (2013), both tasks are dealt with in
a unified Bayesian framework, that is suitable for describing
the uncertainty in both parameters and structure. Structure and
parameter variations are performed based on a statistical accep-
tance/rejectionmechanism. Posterior distributions are inferred us-
ing the Reversible Jump Markov Chain Monte Carlo (RJMCMC)
procedure. The introduction of random sampling favors the con-
vergence to the global minimum. However, MCMC methods are
known to require a burn-in period for the Markov chain to con-
verge to the desired stationary distribution, and this calls for many
iterations.

In this paper, a novel iterative randomized algorithm is
introduced for the identification of nonlinear systems, based on
a different probabilistic reformulation of the MSS problem. The
method is here described for NARX models only, although the
extension to the NARMAX case can be envisaged (and is a matter
of current research endeavors). A Bernoulli random variable is
associated to each regressor. These random variables are assumed
to be independent and, at each iteration, the proposed algorithm
generates a set of models, each one being independently extracted

from the joint distribution of all regressors. More precisely, an
extracted model will contain a specific regressor if the value taken
by the Bernoulli random variable associated to that regressor is
1. Then, the parameters of the extracted models are estimated,
and the performances of the parameterized models evaluated in
terms of a suitable index based on the prediction and simulation
errors. Finally, the Bernoulli distribution of each regressor is
updated based on the performances of the entire population
of extracted models. More precisely, a regressor probability is
increased if, on average, the extracted models that contain that
specific regressor perform better than those that do not, and
decreased in the opposite case. The algorithm converges to a limit
distribution corresponding to a specific model structure. Some
examples are analyzed by means of Monte Carlo simulations to
show the effectiveness of the adopted probabilistic formulation,
and to illustrate the improved reliability of the proposed algorithm
compared to currently available randomized methods.

The proposed approach has some features in common with
evolutionarymethods, such as genetic algorithms (GA) (Rodriguez-
Vazquez, Fonseca, & Fleming, 2004), in that it exploits randomness
in choosing potential regressors and processes populations of
models. More in detail, a GA selects the fittest individuals in
the current population and manipulates them to generate a new
population, using specific pair-wise operators. In our framework,
the ‘‘fitness’’ of each regressor is evaluated from an aggregate
analysis of the whole population. All individuals of the population
contribute to the evaluation of the regressors, either reinforcing or
discouraging their selection. Then, the newpopulation is generated
from scratch, based on the aggregate information derived from the
current population.

A preliminary version of this work is given in Falsone, Piroddi,
and Prandini (2014). The present paper significantly extends
that contribution both from a theoretical and a methodological
viewpoint. More specifically, the iterative algorithm is here
better formalized within an appropriately defined probabilistic
framework, and its convergence properties are established.
Furthermore, a more extensive assessment of the performance
of the proposed approach has been carried out via numerical
examples taken from the literature. In particular, the behavior of
the algorithm is analyzed in critical operating conditions, such as
when a slowly varying input signal is used orwhen the randomized
procedure is only allowed to get partial information on the correct
model structure. In the case of a slowly varying input signal, the
possible advantages related to the use of the simulation error for
performance evaluation purposes are also discussed.

The rest of the paper is organized as follows. Section 2
provides the basic framework and notation for nonlinear system
identification of NARX models and briefly reviews the main
approaches in the literature. Section 3 discusses the crucial issue
of how to evaluate the importance of each regressor. The proposed
method is illustrated in Section 4 and then tested in Section 5.
Finally, some concluding remarks are drawn in Section 6.

2. Preliminaries

2.1. The NARX model class

A NARX model (Leontaritis & Billings, 1985) is described by the
following input/output recursive equation:

y(k) = f (y(k− 1), . . . , y(k− ny),

u(k− 1), . . . , u(k− nu))+ e(k) (1)

where y(k), u(k), and e(k) are the output, input, and (white) noise
signals, respectively, ny and nu being suitable maximum lags, and
f (·) is an unknown nonlinear function.
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