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A stochastic approximation algorithm is a recursive procedure to find the solution to an unknown
nonlinear equation via noisy measurements. In this paper, we present a stopping rule for a stochastic
approximation. We show that there is a high probability that the distance between the exact solution and
the candidate solution is less than a specified tolerance level when the stochastic approximation stops
according to our stopping rule. Furthermore, the number of recursions required by the stopping rule is a

polynomial function of the problem size.
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1. Introduction

Stochastic approximation (Robbins & Monro, 1951) is a recur-
sive procedure that uses noisy measurements to find the solution
to an unknown nonlinear equation. This technique is a part of the
basic framework of a probabilistic approach (Tempo, Calafiore, &
Dabbene, 2013) to control analysis and synthesis. There are many
applications of the control of systems, including recursive identifi-
cation (Chen, 2010; Mu & Chen, 2013), iterative learning (Butcher,
Karimi, & Longchamp, 2008; Chen & Fang, 2004), adaptive con-
trol, and consensus control (Huang, Dey, Nair, & Manton, 2010;
Huang & Manton, 2010). We can also apply stochastic approxima-
tion to unconstrained minimization problems (Kiefer & Wolfowitz,
1952; Spall, 1992; Yousefian, Nedié¢, & Shanbhag, 2012), since un-
constrained optimization is equivalent to finding the zero point
of a gradient. Furthermore, the stochastic approximation is one of
the key ideas of distributed optimization (Nedi¢ & Ozdaglar, 2009).
That is, it is important to investigate the method.

There are much research on the theory of stochastic approxi-
mation, and sufficient conditions are now well established for the
convergence of the candidate solutions that are generated by this
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procedure (Benveniste, Métivier and Priouret, 1990; Borkar, 2008;
Chen, 2002; Kushner & Yin, 1997; Nevelson & Hasminskii, 1976;
Spall, 2003). In particular, it is established that stochastic approx-
imation yields the solution of the unknown equation if the proce-
dure is iterated sufficiently many (possibly infinitely many) times.
However, in practical situations, the algorithm must be stopped
after a finite number of recursions, and we thus focus on the
quality of the candidate solutions obtained from a finite number of
samples. Although Polyak (1976) employs Lyapunov function and
Martingale theory to clarify the rate of convergence, they do not
determine when the procedure should stop. We therefore wish to
develop a stopping rule that would guarantee a sufficiently small
distance between a candidate solution and the exact solution.
There are little research on determining stopping rules for
stochastic approximation. Burkholder (1956) shows that the can-
didate solutions for the scalar stochastic approximation asymptot-
ically follow a normal distribution; that is, they have asymptotic
normality. Based on this asymptotic normality, some stopping
rules (Sielken, 1973; Stroup & Braun, 1982) are developed for the
stochastic approximation of scalar nonlinear equations. Stopping
rules are shown in Yin (1988) for the simple multidimensional case
and in Yin (1990) for the multidimensional case in which the mea-
surement noise depends on the candidate solutions. Notice that
these stopping rules provide practical guarantees on the size of the
estimation error, which is the distance between the exact solu-
tion of the unknown equation and the current candidate solution.
Since this property is only guaranteed for a large number of recur-
sions for these stopping rules, the necessary number of recursions
is unknown in advance. In fact, it is shown that the obtained solu-
tions are generally not close enough to the exact solution when the
number of recursions is small (Glynn & Whitt, 1992). As another
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research on stopping rules, Pflug (1990) proposes a stopping rule
for stochastic approximation that has a constant step size. The rule
guarantees that the obtained solution is close enough to the exact
solution of the unknown equation. However, it requires a poste-
riori information, in particular, it is necessary to know the signs
of the measurements used in the procedure, and thus we cannot
know the necessary number of recursions in advance.

In this paper, we present a stopping rule that is based only on
information that is available a priori. We have already provided a
stopping rule for linear stochastic approximation (Wada, Itani, &
Fujisaki, 2010). However, since stochastic approximation is essen-
tially a method for unknown “nonlinear” equation, we have to de-
velop stopping rules for nonlinear stochastic approximation. For
achieving this goal, we will consider basic stochastic approxima-
tion for a nonlinear equation. We then derive an explicit bound on
the number of recursions required in order to achieve a given small
average estimation error. This average estimation error is speci-
fied by two parameters. The first is related to the initial distance
between the candidate solution and the exact solution of the equa-
tion. The second is related to the effect of the observation noise. The
required number of recursions is bounded by a polynomial func-
tion of the covariance of the noise, the parameters that specify the
average estimation error. The key idea used for constructing the
proposed stopping rule is the fact that the candidate solution be-
haves like a time-varying system that is driven by stochastic noise.

This paper is organized as follows. In Section 2, we present
a stopping rule for the standard stochastic approximation. In
Section 3, we present some numerical examples. Next, we provide
the proof of the stopping rule discussed in Section 4, and we
present our concluding remarks in Section 5.

2. A stopping rule for stochastic approximation

Let us consider a nonlinear equation

fx) =0, (1)
where f : R" — R" is unknown, but its measurement
y=fx)+§ (2)

at a given x € R" is available, although it contains measurement
noise £ € R". We assume that the solution x* of the nonlinear
equation (1) is unique. Furthermore, we make the following as-
sumptions about the function f and the measurement noise.

Assumption 1. The function f(-) is differentiable at any x € R". In
addition to this, there exist { € (0, co) and n € (0, 1) such that
the gradient Vf (x) of f with respect to x satisfies

1 * *
/ I_Vf(x —I—t(x—x))dt
0 e

<1-n (3)

for any x # x*, where [ is the identity matrix and || - || denotes the
matrix norm induced by the Euclidean norm.

Notice that there exist ¢ and » such that the above assumption
holds if a nonlinear continuous time system x = —f (x) is quadratic
stable and || Vf (x)|| is bounded, as shown below in Lemma 9. Then,
the assumption implies the uniqueness of the solution to problem
(1). A type of quadratic stability is one of the standard assumptions
used for stopping rules; for example, see Yin (1988) and Yin (1990).
When we analyze convergence property only, differentiability
of f is not needed (Chen, 2002). However, construction of a
stopping rule requires detailed analysis on transient behavior of
the candidate solution. Furthermore, our stopping rule does not
employ any measurement information. Thus, to develop a stopping
rule, we need differentiation of equation f. Furthermore, even if we
do not know any information on the function f, we can estimate
necessary number of recursions by setting sufficiently small n and
sufficiently large ¢.

Assumption 2. The measurement noise§ € R" isarandom vector.
Then, its mean is zero and its variance X > 0 is bounded, i.e.,

E[§]1=0,
Var§] = E[(€ —E[ED( —E[E])'] =2 >0,
where E[-] denotes the expectation and Var[-] is its variance.

Standard stochastic approximation (Robbins & Monro, 1951) is
a recursive procedure for solving the nonlinear equation (1) ac-
cording to the update rule

Xip1 = Xk — Ak, (4)

where k denotes the recursion number. That is, x, € R" is the
kth candidate for the solution, y, € R" is the kth measurement of
Eq. (1) according to (2), and qy is the kth step size, as specified by
the user. Under appropriate assumptions, the stochastic approxi-
mation asymptotically gives us the solution x* of (1). For example,
some sufficient conditions for convergence have been summarized
in Benveniste et al. (1990), Borkar (2008), Kushner and Yin (1997),
Nevelson and Hasminskii (1976), Spall (2003). In this paper, we as-
sume that {§,i =1, 2, ..., } is an independent random sequence
and we select

1
C ng(ko + k)

where kq is a stability constant, and introduce the following as-
sumptions for ensuring convergence of the procedure (4).
Under these conditions, we have the following stopping rule.

Qi

Theorem 3. When Assumptions 1 and 2 are satisfied, for given con-
stants @ € (0, 00) and B € (0, 00), select k € N and ky € N that
satisfy

k > max{zy, 12}, (5)
ko +1
= — ko, 6
71 ﬁ 0 ( )
4Tr Y K 7)
T2 — Ko,
Bn?¢?
1
ko> — — 1. (8)
n

Then, for any initial candidate x; € R" for the solution, the kth solu-
tion candidate xj, generated by (4) satisfies

ELlx; — x*1*] < allx — x> + B, 9)
where || - || is the Euclidean norm.

Since the proof of this theorem is somewhat complicated, we
will wait to present it until Section 4. This theorem states that, if
we select an appropriate number k of recursions, then x; is close to
the solution x* of Eq. (1) in the second mean, that is, the average
distance between x; and x* is determined by « and 8, which are
freely selected by the user. Furthermore, 7; and 1, are polynomial
functions of 1/«, 1/8, 1/n, 1/¢, and TrX. Such an appropriate k
clarifies the probabilistic relationship between the properties of
the noise and the estimation error. Furthermore, to determine k,
it is not necessary to have a posteriori information, such as the
measurement sequence y, k = 1, 2, .. .. This is very different from
the information needed in conventional stopping rules (Sielken,
1973; Stroup & Braun, 1982; Yin, 1988, 1990). (See Appendix B.)

Our result is a natural extension of conventional results. When
we solve (6) and (7) with respect to @ and 8, we have

ko + 1\° 4ATrY
o= , B=— .
k + ko n%¢2(k + ko)
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