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a b s t r a c t

This paper considers the problem of using noisy output data to estimate unknown time-delays and
unknown system parameters in a general nonlinear time-delay system. We formulate the problem as
a dynamic optimization problem in which the unknown quantities are decision variables to be chosen
optimally, with the cost function penalizing the mean and variance of the least-squares error between
actual and predicted system output. Since the time-delays and system parameters influence the cost
function implicitly through the governing time-delay system, the cost function’s gradient – which is
required to solve the problem using gradient-based optimization techniques – cannot be computed
analytically using standard differentiation rules. We instead develop two computational methods for
evaluating this gradient: one involves solving an auxiliary time-delay system forward in time; the other
involves solving an auxiliary time-advance systembackward in time. On this basis,we propose an efficient
optimization algorithm for determining optimal estimates for the time-delays and system parameters.
We conclude the paper by examining the performance of this algorithm on a dynamic model of a
continuously-stirred tank reactor.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Developing a mathematical model is a two-step process: first,
the general structure of the model is derived based on fundamen-
tal physical principles; then, the model is matched to a particular
system of interest by tuning various model parameters. This sec-
ond step, known as parameter estimation or parameter identifica-
tion, usually involves comparing the system output predicted by
the model with the real system output measured during an exper-
iment (or a series of experiments).

This paper is concerned with parameter estimation for non-
linear time-delay systems. We consider a general dynamic model
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consisting of nonlinear delay-differential equations with multiple
time-delays and multiple system parameters, each of which is un-
known and needs to be estimated appropriately. The problem that
we investigate – called the parameter estimation problem – is to de-
termine optimal estimates for the time-delays and system param-
eters so that the dynamic model best fits the real system under
consideration. Such problems are commonly referred to as inverse
problems.

Parameter estimation for time-delay systems has attracted
considerable research interest over the past two decades (see
Belkoura, Richard, & Fliess, 2009, Drakunov, Perruquetti, Richard, &
Belkoura, 2006, Lunel, 2001, Orlov, Belkoura, Richard, & Dambrine,
2002, 2003, Park, Han, & Kwon, 2013, Tuch, Feuer, & Palmor,
1994 and Zheng, Barbot, & Boutat, 2013). Popular approaches
for solving the parameter estimation problem include swarm
intelligence algorithms such as particle swarm optimization (Gao,
Qi, Yin, & Xiao, 2010; Tang & Guan, 2009), or finite-dimensional
approximation schemes for the original infinite-dimensional time-
delay model (Banks, Rehm, & Sutton, 2010). Recently, a new
gradient-based optimization approach has been proposed by Chai,
Loxton, Teo, and Yang (2013a,b) and Loxton, Teo, and Rehbock
(2010). In this approach, the parameter estimates are chosen as
the solution of a dynamic optimization problem in which the cost
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function penalizes the deviation between predicted and measured
system output. Special dynamic optimization techniques can then
be deployed to solve this problem and obtain accurate estimates
for the model parameters. This approach was introduced by
Loxton et al. (2010) for nonlinear time-delay systems in which
each nonlinear term contains a single delay and no other model
parameters, and then extended by Chai et al. (2013a) to more
general nonlinear systems with multiple delays and multiple
systemparameters. In Chai et al. (2013b), the approachwas applied
to a more difficult parameter estimation problem in which the
dynamic system contains both state- and input-delays, and the
input function is discontinuous.

The twomain advantages of the parameter estimationmethods
proposed by Chai et al. (2013a,b) and Loxton et al. (2010) are:
(i) these methods can readily handle system nonlinearities; and
(ii) these methods can simultaneously compute optimal estimates
for the time-delays and system parameters in a unified fashion.
One limitation, however, is that these methods do not take
into account the possibility of noise in the output data. Thus,
the output measurements used in the cost function (recall that
the cost function penalizes the discrepancy between predicted
and measured system output) are assumed to be exact. This
is, of course, an idealistic assumption, as it is impossible to
guarantee perfect precision when measuring the output of a real
system.

The purpose of this paper is to address this limitation. Building
on the results in Chai et al. (2013a,b) and Loxton et al. (2010),
we will devise a new method for parameter estimation that
explicitly takes output measurement noise into account. The
main idea is to consider the output data points as random
variables, rather than fixed constants. This allows for possible
discrepancies between the actual and observed system output due
to measurement errors. With the output data as random variables,
our parameter estimation problem is formulated as a stochastic
dynamic optimization problem in which the aim is to choose
the time-delays and system parameters to minimize a weighted
sum of the expectation and variance of the least-squares error
between actual and predicted system output. We will develop a
computational approach for solving this problem based on novel
dynamic optimization techniques. The result is a unified parameter
estimation method for nonlinear time-delay systems that is fast,
versatile, and capable of handling uncertainties in the measured
output data.

2. Problem statement

Consider the following nonlinear time-delay system:

ẋ(t) = f (x(t), x(t − τ1), . . . , x(t − τm), ζ), t ≥ 0, (1)

x(t) = φ(t, ζ), t ≤ 0, (2)

where x(t) ∈ Rn is the state vector; ζ ∈ Rr is the parameter vector;
τi, i = 1, . . . ,m, are time-delays; and f : R(m+1)n

× Rr
→ Rn

and φ : R × Rr
→ Rn are given continuously differentiable

functions.
The output y(t) ∈ Rq of system (1)–(2) is given by the following

equation:

y(t) = g(x(t), ζ), t ≥ 0, (3)

where g : Rn
× Rr

→ Rq is a given continuously differentiable
function.

Both the time-delays τi, i = 1, . . . ,m, and the parameter
vector ζ are unknownandneed to be estimated. Let ai and bi denote
the lower and upper bounds of the ith time-delay. Then

ai ≤ τi ≤ bi, i = 1, . . . ,m. (4)

Any vector τ ∈ Rm with components satisfying (4) is called a
candidate time-delay vector for system (1)–(3). Let T denote the
set of all candidate time-delay vectors.

Similarly, let cj and dj denote the lower and upper bounds of the
jth system parameter in ζ. Then

cj ≤ ζj ≤ dj, j = 1, . . . , r. (5)

Any vector ζ ∈ Rr with components satisfying (5) is called a
candidate parameter vector for system (1)–(3). Let Z denote the set
of all candidate parameter vectors.

For each candidate pair (τ, ζ) ∈ T × Z, let x(·|τ, ζ) denote the
state trajectory obtained by solving Eqs. (1)–(2) with the compo-
nents of τ and ζ used as the time-delays and system parameters,
respectively. Furthermore, let y(·|τ, ζ) denote the corresponding
output function obtained by substituting x(·|τ, ζ) into (3).

Our goal is to estimate the unknown time-delays and system
parameters by comparing the predicted system output (obtained
by solving the model (1)–(3)) with the actual system output
(measured during a series of experiments) at a set of sample times
{tk}

p
k=1, where

0 = t0 < t1 < t2 < · · · < tp−1 < tp.

Let ŷk denote the actual system output at time t = tk. In Chai et al.
(2013a,b) and Loxton et al. (2010), we assumed that the output
vectors ŷk, k = 1, . . . , p, can be measured exactly. However, this
assumption is unrealistic; due to system noise and measurement
errors, the true system output will often differ slightly from the
measured output. Thus, in this paper, we view ŷk, k = 1, . . . , p, as
random vectors of known distribution.

We assume that the following matrices can be obtained from
the distribution of ŷk, k = 1, . . . , p:

4k,l
= Cov{ŷk, ŷ l

}, ϒk,l
= Cov{(ŷk)2, ŷ l

}, (6)

where (ŷk)2 denotes the vector obtained by squaring each element
of ŷk. The issue of computing these matrices is discussed in
Section 4.

Any τ ∈ T is a candidate for the real time-delay vector.
Similarly, any ζ ∈ Z is a candidate for the real parameter vector. To
measure estimation accuracy, we use the following least-squares
error function:

J(τ, ζ) =

p
k=1

y(tk|τ, ζ) − ŷk
2

.

Our parameter estimation problem is stated as follows.

Problem P. Choose τ ∈ T and ζ ∈ Z to minimize

G(τ, ζ) = γ E{J(τ, ζ)} + (1 − γ )Var{J(τ, ζ)},

where E{·} denotes expectation, Var{·} denotes variance, and γ ∈

[0, 1] is a given weight.

The aim in Problem P is to minimize both the average error and
the error variance. The weight γ controls the relative importance
between these two objectives. If γ is close to one, then the priority
is tominimize average error; if γ is close to zero, then the priority is
tominimize error variance.When the output distribution is known
exactly, γ = 1 is the best option for minimizing the expected er-
ror. However, aswe show in the numerical simulations in Section 6,
when there are errors and/or uncertainties in the output distribu-
tion, it is essential to choose γ < 1 to ensure solution robustness.
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