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a b s t r a c t

This paper presents an algorithm for the localization of forces applied to a structure. The
force estimation is performed in the frequency domain based on a limited number of
sensors and a linear dynamic system model and it involves minimizing an objective
function penalized with a group sparsity term. The minimization of this objective function
is formulated as a second order cone program, which is solved using an interior point
method. This allows for a reduction of the calculation time when compared to other
algorithms that are currently available to enforce group sparsity on the forces, especially
for large scale problems. The presented algorithm is first verified using numerical simula-
tions. Next, a validation is performed using data obtained from a field test on a footbridge,
where two locations on the bridge deck are excited using hammer impacts and the force
localization is performed assuming a total of 108 possible force locations.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

For many civil engineering structures, it is of great importance to have information on the dynamic loads exciting the
structure. In many cases, however, the loads cannot be measured directly. For example, applying force transducers might
disturb the load, or the load of interest might excite the structure at an unreachable location or a location that is not
known in advance. To overcome this problem, force identification techniques can be used, which combine the response
of the structure measured at accessible locations with a dynamic system model to obtain an estimate of the dynamic
loads.

Most force identification algorithms presented in the literature assume the location of the forces to be known and the
number of forces to be smaller than or equal to the number of response measurements. The dynamic forces can then be
estimated in the time domain [1–3] or, alternatively, in the frequency domain [4]. In the frequency domain, the Fourier
transform of the forces is often obtained from the Fourier transform of the measured response through the pseudo-
inverse of the frequency response function (FRF) matrix. In many cases, however, the ill-posedness of the force identification
problem results in large estimation errors. Therefore, regularization techniques, such as penalizing the ‘2 norm of the force
vector, are commonly used to improve the force estimation [4].

Different algorithms have been presented in the literature to solve the force localization problem. Guillaume et al. [5]
developed an algorithm to localize the forces using a weighting matrix that is determined by minimizing the sum of the
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‘p norm of the forces for all frequencies. The forces can then be determined by computing a weighted pseudo-inverse of the
FRF matrices. The value of p is generally taken very small to enforce sparse solutions of the force identification problem.
Ginsberg and Fritzen [6] proposed an ‘1 regularized least squares problem that penalizes force vectors with a large ‘1
norm to localize forces in the time domain. Problems of this type are commonly solved using iterative shrinkage-
thresholding algorithms (ISTA) such as FISTA [7] or MTWIST [8]. Qiao et al. [9], however, proposed the use of interior point
methods to solve this regularized problem. Kirchner et al. [10] recently developed the compressive sensing-moving
horizon estimator (CS-MHE) which combines a moving horizon estimator (MHE) with an ‘1 regularization term. This
allows for a recursive solution of the force localization problem in the time domain. Aucejo [11] developed the GIRLS
algorithm to solve a similar regularized least squares problem at each frequency and recently suggested an alternative
technique based on multiplicative regularization, where the regularization parameter and the forces are determined
simultaneously [12]. Rezayat et al. [13] developed the G-FISTA method that minimizes a mixed ‘2=‘1 regularized objective
function for multiple frequencies at once. G-FISTA is an extension of FISTA [7] and allows to take into account a coupling
between frequencies, i.e. if a location is excited by a force at a given frequency, then this force most likely also excites the
same location at other frequencies.

This paper presents an alternative ‘2=‘1 regularized objective function that is minimized to localize forces in the fre-
quency domain. It is shown that this objective function can be cast in a second order cone program (SOCP), which can be
solved using interior point methods. The presented technique is verified with a numerical example of a cantilever steel beam
and validated using data obtained from a field test on a footbridge, showing the applicability of the method for a real-life
case.

The outline of the paper is as follows. Section 2 presents an algorithm to localize forces and to estimate their narrow band
frequency spectrum. Next, Section 3 shows an illustration of the algorithm based on numerical simulations for a cantilever
steel beam, and compares the calculation time of the proposed technique to the calculation time of G-FISTA. Section 4 pre-
sents a validation of the algorithm using data obtained from a field test on a footbridge. Finally, in Section 5, the work is
concluded.

2. Mathematical formulation

This section shows how forces can be identified in the frequency domain using the least squares method and how
this commonly used method can be adapted in case the number of response measurements is smaller than the number
of forces.

2.1. Force identification

Consider the vector dðxÞ 2 Cnd containing the Fourier transform of nd measured outputs at a frequency x:

dðxÞ ¼ HdpðxÞpðxÞ þ vðxÞ ð1Þ
where pðxÞ 2 Cnp is the vector containing the Fourier transform of np forces, and HdpðxÞ 2 Cnd�np is the transfer function
matrix that relates the force vector to its response. The vector vðxÞ 2 Cnd represents the error which in absence of modeling
errors accounts for measurement noise and the response due to additional unknown forces that are not included in the force
vector pðxÞ. The aim of force identification is to determine the force vector pðxÞ from the response dðxÞ, assuming the FRF
matrix HdpðxÞ to be known.

In general, the force vector pðxÞ at a given frequencyx can be estimated by solving the following least squares problem:

p̂ðxÞ ¼ arg min
pðxÞ

T�1ðxÞ dðxÞ �HdpðxÞpðxÞ� ���� ������ ���2
2

ð2Þ

where p̂ðxÞ 2 Cnp is the estimate of the force vector and TðxÞ 2 Cnd�nd is a weighting matrix. In order to obtain the best linear
unbiased estimate (BLUE) of pðxÞ, the weighting matrix TðxÞ is calculated from the power spectral density function (PSD)
SvvðxÞ 2 Cnd�nd of the error vðxÞ as SvvðxÞ ¼ TðxÞT�ðxÞ, where �� denotes the Hermitian transpose. As such, the unique
solution of this weighted linear least squares problem is the BLUE of pðxÞ in the absence of modeling errors and in case
all other errors have a zero mean [14]. Note that the weighting implies that the PSD of the errors SvvðxÞ is known. For prac-
tical applications, this means that it should be determined from prior measurements on the structure in absence of the force
vector itself (see e.g. [15]). It is additionally assumed that the PSD matrix of the errors SvvðxÞ is of full rank, which makes the
Cholesky decomposition unique [16].

In case the number of response measurements is larger than or equal to the number of forces, the optimization problem in
Eq. (2) is strictly convex and its unique solution is given by:

p̂ðxÞ ¼ ðT�1ðxÞHdpðxÞÞyT�1ðxÞdðxÞ ð3Þ
where �y denotes the Moore–Penrose pseudo-inverse.
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