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a b s t r a c t

The problem of how to accurately reconstruct the multicomponent signal from the ridges
of the short-time Fourier transform (STFT) is considered. Especially when time-frequency
representations contain strong noise corruption and crossed components, exact recon-
struction becomes more difficult. In this paper, we propose two robust ridge reconstruction
approaches, i.e., weighted ridge reconstruction (WRR) and self-paced ridge reconstruction
(SPRR). The former is aim to select a more robust loss function to eliminate the influence of
the strong noise and outliers. A half-quadratic optimization algorithm is developed to solve
the proposed problem efficiently. The latter incorporates self-paced learning (SPL) method
into ridge reconstruction model to sequentially include ridge points into signal reconstruc-
tion from easy to complex, which not only can suppress noise and outliers, but also can
avoid a bad result in the presence of missing observations. Simulation and real-life signals
are employed to show the effectiveness and practicability of the proposed approaches.

� 2018 Published by Elsevier Ltd.

1. Introduction

Many real-life signals, such as radar signals, seismic signals and mechanical fault signals, can be modeled as superposi-
tions of amplitude- and frequency-modulated (AM-FM) waves [1,2]. Containing several modes they are often called multi-
component signals. How to accurately and efficiently extract the constituent components from the multicomponent signal
has been a hot point in the signal processing community. Especially when the components of such signals are corrupted by
strong noise and overlap in time-frequency (TF) plane, exact reconstruction becomes more challenging [3,4].

In the past decades, many multicomponent signal decomposition/reconstruction methods have been proposed, and gen-
erally can be classified into three classes. The first one directly extracts each signal mode in time domain, among which the
empirical mode decomposition (EMD) [5] and its extensions [6–8] are the most well-known. Although these methods have
been widely applied in various fields, some challenging issues, like lack of mathematical theory, poor resolution to separate
close modes and sensitive to strong noise, till remain to be addressed [2,12]. Another popular method is the sparsification
approach [9,10], which tries to find sparse representations of signal modes over a parameterized dictionary such as the
Fourier or wavelet-based dictionary. However, if no priori information is available, it is rather difficult to determine the size
of the dictionary which balances the tradeoff between the approximation accuracy and the computation load. The second
class proposes to extract components in frequency domain, which involves empirical wavelet transform [11], variational
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mode decomposition [12] and so on. This kind of methods assumes that the signal modes have narrow-band properties and
have distinct spectrum support, thus they are powerless for the wide-band modes, particularly when overlapping spectrum
happens.

The third class is focused on TF analysis methods, several of which include short-time Fourier transform (STFT), wavelet
transform (WT), synchrosqueezing transform [13] and synchroextracting transform [14], etc. To recover each component in
TF domain, the most obvious way is by inverse STFT or inverse WT [3,15]. However, such methods are easily disturbed by the
noise, especially the interference between crossed components, because it is difficult to define a rational area of each mode
to achieve a tradeoff between energy lost and noise introducing. Another way is the parametric methods, which use a pre-
defined model, such as polynomial [4,16], piecewise polynomial [17], and sinusoidal/Fourier models [18,19], to characterize
the instantaneous frequencies (IFs) of the AM-FM modes. After estimating the model parameters, various post-processing
methods, such as singular value decomposition method [4], joint-optimization technique [20] and non-parametric Gaussian
latent feature model [21] are employed for signal recovery. These methods usually involve multidimensional searches in the
parameter space, which will be relatively time consuming. And the predefined signal model may only adapt to specific sit-
uations. Rather than using the parametric methods, a popular way which has attracted considerable interest is to use the
ridges, being the curve at the TF plane along which the signal energy is locally maximum, for recovery, which involves penal-
ization approach [22,23], skeleton method [24,25] and wavelet ridge signal decomposition (WRSD) method [26]. For the
penalization approach, it is by minimizing a suitably chosen quadratic function and using the values of the skeleton (i.e.,
the TF representations evaluated on the ridge) as linear constraints to reconstruct. This method requires a lot of time to build
the penalty functions and to solve the optimization problem. For the skeleton and WRSD, they are based on the fact that the
ridges give a reasonably good estimate for the IFs of the components. However, this estimation is biased and inaccurate
when estimating the signals which contain stronger modulations [27], let alone the overlapped non-stationary signals.
Besides, S. Mallat [28] considered the TF atoms on the ridge as a frame and used the available frame algorithm to reconstruct.
Despite this method achieves good performance in term of accuracy and efficiency, it is sensitive to strong interference, espe-
cially in the presence of outliers and missing observations (see Section 4 for some numerical experiments).

To better eliminate the influence of strong interference in TF plane and obtain a more robust reconstruction, in this paper,
we give two robust ridge reconstruction approaches, i.e., weighted ridge reconstruction (WRR), self-paced ridge reconstruc-
tion (SPRR). For WRR, more robust loss functions are employed and adaptive weights are assigned to different ridge points
via half-quadratic minimization [29], which is much more insensitive to heavy noise and outliers. For SPRR, self-paced learn-
ing (SPL) method [30] is incorporated into the ridge reconstruction model to sequentially include ridge points into signal
reconstruction from easy to complex, which not only can effectively eliminate the influence of the strong noise, but also
helpful to avoid a bad result in the presence of missing observations.

The remainder of the paper is organized as follows. In Section 2, we give a brief description of the STFT ridges of the mul-
ticomponent signal, half-quadratic optimization and self-paced learning. In Section 3, the ridge reconstruction problem and
two robust reconstruction approaches are introduced. The simulation test is carried out in Section 4. In Section 5, a sound
signal and a vibration signal are utilized to show the effectiveness of the proposed methods. Finally, the conclusions are
given in Section 6.

2. Notations and background

2.1. STFT ridges

Consider a multicomponent AM-FM signal as

f ðtÞ ¼
XK
k¼1

f kðtÞ ¼
XK
k¼1

akðtÞej/kðtÞ; ð1Þ

where K is a positive integer representing the number of AM-FM components,
ffiffi
j

p
¼ �1; akðtÞ > 0 is the instantaneous ampli-

tude of the k-th component (or mode), and /kðtÞ is the instantaneous phase of the k-th component satisfying /0
kðtÞ > 0. Gen-

erally, akðtÞ is considered as a continuously differentiable function and /kðtÞ a two times continuously differentiable function.
Let gðtÞ be a real even window function and it satisfies kgk ¼ 1. Define gl;nðtÞ as

gl;nðtÞ ¼ gðt � lÞ expðjntÞ: ð2Þ
The STFT of signal f ðtÞ can be represented as

Sf ðl; nÞ ¼ hf ðtÞ; gl;nðtÞi ¼
Z þ1

�1
f ðtÞgðt � lÞe�jntdt: ð3Þ

The general form for the STFT of a multicomponent signal can be written in the following [23,28]:

Sf ðl; nÞ ¼
XK
k¼1

akðlÞejð/kðlÞ�lnÞĝðn� /0
kðlÞÞ þ rðl; nÞ; ð4Þ
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