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a b s t r a c t

In this paper, we consider the problem of routing multiple robots to service spatially distributed requests
at specified time instants. We show that such a routing problem can be formulated as a pure assignment
problem. Additionally, we incorporate connectivity constraints into the problem by requiring that range-
constrained robots ensure a connected information exchange network at all times. We discuss the
feasibility aspects of such a spatio-temporal routing problem, and derive the minimum number of robots
required to service the requests. Moreover, we explicitly construct the corresponding routes for the
robots, with the total length traveled as the cost to be minimized.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-robot routing requires multiple robots to visit a set of
spatially distributed locations for some purpose (e.g., delivery or
acquisition) with routes that optimize certain criteria (e.g., mini-
mization of total distance traveled, completion time, or energy con-
sumption). In this paper, we consider such a problem of servicing
spatial requests, with an added temporal constraint that each re-
quest be serviced at a specified time instant.Moreover,we consider
the connectivity constrained version of the problem, where we re-
quire that the underlying information exchange network remains
connected at all times.

In the robotics literature, multi-robot routing is a well studied
topic (e.g. see Burgard, Moors, Stachniss, & Schneider, 2005, and
Mosteo, Montano, & Lagoudakis, 2008). Many problems on combi-
natorial optimization are associated with multi-robot routing. For
instance, the multiple traveling salesman problem (m-TSP) con-
sists of determining a set of optimal routes form salesmen who all
start from and turn back to a home city (see Bektas, 2006). Another

✩ This work was sponsored by the ONR grant MURI HUNT (grant number
2106APT, University of Pennsylvania). The material in this paper was partially
presented at the 4th IFAC Conference on Analysis and Design of Hybrid Systems,
June 6–8, 2012, Eindhoven, The Netherlands and at the 3rd IFAC Workshop on
Distributed Estimation and Control in Networked Systems, September 14–15, 2012,
Santa Barbara, CA, USA. This paper was recommended for publication in revised
form by Associate Editor Hideaki Ishii under the direction of Editor Christos G.
Cassandras.

E-mail addresses: smriti.chopra@gatech.edu (S. Chopra),
magnus@ece.gatech.edu (M. Egerstedt).

example is the vehicle routing problem (VRP) (see Arsie, Savla, &
Frazzoli, 2009), which concerns the design of optimal delivery or
collection routes for a fleet of vehicles from one or many depots to
a number of geographically scattered customers with known de-
mands. The dynamic counterpart of theVRP, knownas the dynamic
vehicle routing problem, deals with online arrival of customer de-
mands during the operation (see Bullo, Frazzoli, Pavone, Savla, &
Smith, 2011, and Pavone & Frazzoli, 2010).

Applications of such routing problems include surveillance,
search and rescue, transportation on demand, and assembly.
However, to solve these problems is computationally expensive. In
fact, the VRP is proven to beNP-hard (see Karp, 1972). To overcome
this complexity, one cannote thatmany times, applications require
an ordered sequence in which requests be serviced. For instance,
an autonomous structure assembly system, or a car manufacturing
system, may require multiple robots to service locations in a
synchronized and sequenced manner, thus motivating the need
for spatio-temporal requests in lieu of spatial requests. In this
paper, we show that by adding such temporal constraints to the
spatial requests, a notion of directionality appears in the otherwise
NP- hard problem of routing, and thus, it can be converted to an
assignment problem, solvable in polynomial time (for preliminary
results in this direction, see Chopra & Egerstedt, 2012b).

An important aspect of multi-robot coordination concerns con-
nectivity maintenance, where in order to ensure that the robots
can execute a mission in a collaborative manner, the induced in-
formation exchange network must be sufficiently rich. In this pa-
per, we require that the range-constrained network induced by
the positions of the robots be connected for all times (for prelimi-
nary results, see Chopra & Egerstedt, 2012a). In general, connec-
tivity maintenance in multi-robot networks requires techniques
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for ensuring connectivity of a range constrained multi-robot net-
work during some task execution. Such techniques include using
relays dedicated towards maintaining sensing or communication
links (e.g. Dixon & Frew, 2009, and Nguyen, Pezeshkian, Raymond,
Gupta, & Spector, 2003), or using formation control strategies to-
wards motion planning (see Kan, Dani, Shea, & Dixon, 2011). Other
methods seek connectivity at particular time instants only, (e.g.
Ponda, Johnson, Choi, & How, 2011). However, we are interested in
constructing routes that maintain connectivity for all times, while
allowing dynamic assignment between robots and spatio-temporal
requests such that no robots exist solely for the task of maintaining
connectivity links.

This paper is organized as follows: In Section 2, we discuss
the Unconstrained Routing Problem, followed by its corresponding
Connectivity Constrained version in Section 3. Finally, we demon-
strate the routing problems through simulations and hardware im-
plementations, in Section 4.

A motivating example—the robot music wall

Consider a two-dimensional magnetic-based surface (wall)
with a grid of strings in different pitches that generate soundwhen
plucked. Distinct positions on thewall correspond to distinct sound
frequencies, i.e. distinct notes of an instrument. Multiple robots
with the ability to traverse the wall can reach these positions and
pluck at the strings above them (see Fig. 1).

With this set-up, we can interpret any piece of music consisting
of a series of notes to be played at specified time instants, as a series
of corresponding spatio-temporal requests (timed positions) on the
music wall. We call such a series a Score, which contains positions
thatmust be reached at specified time instants. By routingmultiple
robots to service such timedpositions,we can effectively ‘‘play’’ the
piece of music associated with them on the wall.

2. The unconstrained routing problem

We let T = {t1, t2, . . . , tn} denote the set of n discrete time
instants over which the Score is defined, where t1 < · · · <
tn. Moreover, we let Pi denote the corresponding set of planar
positions that require simultaneous servicing at time ti. Each
position in this set is denoted by Pi,α , where α ∈ {1, . . . , |Pi|} (the
symbol | · | denotes cardinality), i.e.,

Pi = {Pi,α | α ∈ {1, . . . , |Pi|}}, ∀i ∈ {1, . . . , n}. (1)

We let K be the maximum number of positions that require
simultaneous servicing at any time instant in T , i.e.,

K = max
i∈{1,...,n}

|Pi|. (2)

Definition 1. Let the Score, denoted by Sc, be the set of all timed
positions that the robots must reach. We express such timed
positions as (position, time) pairs in the Score, i.e.,

Sc = {(Pi,α, ti) | i ∈ {1, . . . , n}, α ∈ {1, . . . , |Pi|}}. (3)

Moreover, for a given set of r robots, denoted by R = {1, . . . , r},
we let P0 = {P0,α | α ∈ {1, . . . , |P0|}} be the set of their initial
positions, defined at time instant t0.

Notice that if we have fewer robots than themaximum number
of positions requiring simultaneous servicing in the Score, given by
K , then all K positions cannot be reached simultaneously. Thus,
we must have at least K robots, i.e. r ≥ K .

We are interested in the problem of optimally routing these
robots to reach the timed positions contained in the Score. By
optimal, we mean a routing plan that minimizes the total distance
traveled by the robots. Moreover, we want our solution to act at a

Fig. 1. A rendering of the Robot Music Wall concept.

high enough level of abstraction so that the dynamics of the robots
do not have to be explicitly accounted for. This construction must
be inherently hybrid in that it connects the continuous dynamics to
a discrete solution. Hence, we assume single integrator dynamics
for every robot, given by ẋp = up, p ∈ R. Since for such systems,
minimum distance paths are straight lines and minimum energy
motions have constant velocities, we let robots move between
assigned positions in straight line paths with constant velocities
that ensure their timely arrival.

Note that we can interpret the path of any robot as a series
of individual assignments between timed positions assigned to
that robot, directed in increasing order of specified time instants.
Hence, the information contained in the optimal paths of the robots
can be encoded in a different function that explicitly describes
such individual assignments. We elaborate on this in subsequent
paragraphs,

Definition 2. Let the Assignees, denoted by As, be the set contain-
ing all timed positions in the Score specified before the last time
instant tn, in addition to all timed initial positions of the robots,
i.e.,

As = {(Pi,α, ti) | i ∈ {0, . . . , n− 1}, α ∈ {1, . . . , |Pi|}}. (4)

Note that r ≥ K implies that |As| ≥ |Sc|.

We let π : As → Sc be a function that maps between timed
positions in the Assignees and the Score. If there exists some As′ ⊆
As, such that firstly, the restricted function π |As′ : As′ → Sc is a
bijection, and secondly, π((Pi,α, ti)) = (Pj,β , tj) ∈ Sc ⇒ tj > ti
for all (Pi,α, ti) ∈ As′, then we call this restricted function a feasible
assignment. The first condition ensures that every timed position
in the Score is assigned, no two timed positions in the Assignees
map to the same timed position in the Score, and no two timed
positions in the Score are assigned to the same timed position in
the Assignees. The second condition enforces directionality within
each individual assignment, i.e. it states that a position in the Score
specified at time instant tj must be assigned to a position in the
Assignees specified at some time instant ti earlier than tj i.e. ti < tj.
We call this the directionality constraint.

In addition to being feasible, if the total distance associatedwith
the individual assignments in π |As′ is minimum (akin to saying
that the total distance traveled by all the robots is minimum),
then we call it an optimal assignment, denoted by π ⋆. Note that
π ⋆ is restricted to the subset As′ ∈ As because the condition
|As| ≥ |Sc| forces (|As| − |Sc|) number of timed positions in As
to go unassigned, in order to ensure π ⋆ is indeed a bijection.



Download	English	Version:

https://daneshyari.com/en/article/695360

Download	Persian	Version:

https://daneshyari.com/article/695360

Daneshyari.com

https://daneshyari.com/en/article/695360
https://daneshyari.com/article/695360
https://daneshyari.com/

