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a b s t r a c t

If a subdomain of a structural system is introduced to a perturbation, the resulting shifts in
any field quantity outside the boundary of some closed region encompassing the perturba-
tion can be generated from stress fields acting on the aforementioned boundary. In the pre-
sent paper, this is exploited in the context of structural damage localization to cast the
Subspace Exclusion Zone (SEZ) scheme, which locates damage by inspecting the feasibility
of generating the observed shifts from actions acting at the boundary of the postulated
zones in a model of the structure in question. As such, the SEZ scheme is a forward inter-
rogation that allows for a user-defined localization resolution and, under certain input con-
ditions, operates without the use of system identification. The approach is most
conveniently implemented in the Laplace domain and holds at s-values for which the load
vector in the reference and the damaged states are proportional. The constraint that
ensures exact results in an idealized model context is that the number of measurements
outside any considered exclusion zone (EZ) exceeds the number of DOF on its boundary.
It is shown, however, that useful results can be obtained with notably smaller sensor
counts. The paper illustrates application of the SEZ scheme in simulations and in an exper-
imental setting using a beam subjected to harmonic input.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

When facing the task of locating a structural damage using vibration measurements, an approach often adopted is to map
changes in some limited set of experimental features, for example, frequency response functions, to the structural domain by
use of an analytical model [1–3]. The general premise is, as such, to compare analytical subspaces to an experimental sub-
space and then discriminate between healthy and damaged structural subdomains based on orthogonality (or parallelism)
between these subspaces. One of the early examples of such approach is the Best Achievable Eigenvector technique [4],
which is a forward method that interrogates one element at a time and announces damage when the span of a subspace that
depends on the element being considered contains the identified eigenvectors. A shortcoming of this approach, and many
other of the early localization schemes, is that the experimental feature needs to be available at all the coordinates of the
analytical model. Since this requirement is never satisfied in practice, the missing experimental entries have to be estimated
using coordinate expansion techniques [5], which often degrade the performance severely.

A damage localization approach that does not require a coordinate match between the experimental and the model coor-
dinates is the Damage Locating Vector (DLV) family [6–9]. Here, damage is localized by inspecting stress fields computed in a
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model using load vectors from the kernel of changes in either the flexibility or the transfer matrix extracted from the mea-
sured vibration data; making evident that the approach relies heavily on sufficiently accurate system identification results. A
localization scheme based on an extension of the subspace residual detection approach [10,11] is presented in [12]. This
scheme, which also relies on system identification, is based on directional changes of a certain residual and is theoretically
supported on the assumption that the damage is very small. Methods that attempt to localize damage by looking at changes
in mode shapes have been examined by several authors [1,13], with ‘‘curvature mode shapes” receiving particular note in
beam investigations. A review of the aggregate of the work up to year 2014 is presented in [14] and makes clear that the
performance is generally poor. Another class of methods, restricted to cases where full control of the excitation sources is
available, uses changes in transmissibility functions and a critical review can be found in [15]. There are, of course, many
studies where damage is characterized by updating a model and information on location is obtained [16,17], but we do
not consider these as damage localization techniques as the damage extent is not uncoupled in the formulation.

An item that often detracts from robustness in localization schemes is the fact that aspects of the problem that need not
be answered affect results. For example, in a scheme that attempts to locate a crack in a plate, the crack orientation has an
effect on the response but is of no interest as far as the localization goes. An approach that avoids the unnecessary complex-
ity of damage details is the recently introduced Shaped Damage Locating Input Distribution (SDLID) scheme [18], which
interrogates the domain from postulated damage patterns for which multiple controllable inputs are tailored to suppress
certain vibration quantities. While circumvention of system identification and avoiding unnecessary details add merit to
the SDLID scheme, it is obvious that not all applications allow the use of multiple controllable inputs. The approach intro-
duced in this paper, the Subspace Exclusion Zone (SEZ) scheme, also avoids unnecessary damage details by interrogating the
domain from the boundaries of closed regions postulated to contain the damage in their interior. The SEZ scheme, however,
operates without the need for multiple controllable excitation sources and, under certain input conditions, free of system
identification. The approach is built from the fact that a local perturbation-induced difference in any field quantity outside
the boundary of some closed region—not necessarily simply connected—that contains the perturbation can be generated
from stress fields acting on the aforementioned boundary. We note from the outset that the SEZ scheme does not require
that the actual stress field on a boundary be determined. Instead, it operates solely with the question of whether it is pos-
sible, or not, to find such stress field. One gathers, from the previous discussion, that the SEZ approach does not directly point
to the damage but rather allows one to test whether it is in the interior of any postulated exclusion zone (EZ).

While the SEZ scheme can be implemented either in the time or the Laplace (frequency) domain, the latter is the simpler
choice and is, consequently, the one outlined throughout the present paper. The SEZ approach is most attractive in cases
where the Laplace transform of the loading in the reference and the damaged states are proportional, because, in this
instance, system identification is not needed. It is opportune to note that the proportionality requirement does not imply
that the loading histories in the reference and the damaged states must be scaled versions of each other, but only that
the Laplace transforms are proportional at the s-values used in the interrogation; a condition that is automatically satisfied
for single-source loads. A noteworthy feature of the SEZ scheme is that the dimension of the EZs, and, consequently, the
localization resolution, is user-defined and can be varied throughout the domain. In this way, a priori information on regions
where damage is not feasible is easily considered. We note that in spite of the name selected for the scheme, whether or not
the interior of the EZ is ‘‘removed” is immaterial; with the only difference being that in the ‘‘removed” case, the basis used to
define the stress field at the ‘‘fictive boundary” is user-prescribed while, when the interior is not ‘‘removed”, there is an
unknown transformation which, as long as it is full rank, has no effect on results. This item, which plays a role in computa-
tional effectiveness, is further clarified in the body of the paper. The SEZ scheme bears strong resemblance to the recently
introduced Steady State Shift Damage Localization (S3DL) scheme [19], which also operates in a forward mode with postu-
lated analytical subspaces. The main difference between the two schemes is that the SEZ scheme rests on a theoretical pre-
mise allowing for structural interrogation without prior assumption of whether the damage is mass- or stiffness-related.

The SEZ premise is strictly constraining when the dimension of the experimental vector to be reconstructed is larger than
the number of DOF at the EZ boundaries. One suspects, however, that the DOF at the boundary can be reduced by using a
truncated basis dictated by the dominant singular values of the response fields generated from the boundary, and numerical
results support this expectation. The remaining of the paper is organized as follows. First, in Section 2, the theoretical basis of
the SEZ scheme is provided, followed by a brief summary of the scheme in Section 3. Section 4 contains the application
examples while some concluding remarks are provided in Section 5.

2. The SEZ scheme

Consider a linear, time-invariant structural domain, A, discretized with n DOF and subjected to e independent inputs
gathered in f ðtÞ 2 Re and distributed to A by b2 2 Rn�e. For zero initial conditions, one has

xðsÞ ¼ Ms2 þ Csþ K
� ��1

b2f ðsÞ ¼ HðsÞb2f ðsÞ; ð1Þ

where M;C;K 2 Rn�n are the mass, damping, and stiffness matrices, xðsÞ 2 Cn is the nodal displacement vector, and
HðsÞ 2 Cn�n is the receptance matrix. Now, if the structural domain is introduced to a change, and we assume that at the
selected s-value, the Laplace transform of the loading is proportional to that in the reference state, one can write
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