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a b s t r a c t

The ‘‘scenario approach’’ provides an intuitive method to address chance constrained problems arising
in control design for uncertain systems. It addresses these problems by replacing the chance constraint
with a finite number of sampled constraints (scenarios). The sample size critically depends on Helly’s
dimension, a quantity always upper bounded by the number of decision variables. However, this standard
bound can lead to computationally expensive programs whose solutions are conservative in terms of
cost and violation probability. We derive improved bounds of Helly’s dimension for problems where the
chance constraint has certain structural properties. The improved bounds lower the number of scenarios
required for these problems, leading both to improved objective value and reduced computational
complexity. Our results are generally applicable to Randomized Model Predictive Control of chance
constrained linear systems with additive uncertainty and affine disturbance feedback.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in systems analysis and control synthesis can
be formulated as optimization problems, including Lyapunov sta-
bility, robust control, and Model Predictive Control (MPC) prob-
lems (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994; Mayne, 2014;
Tempo, Calafiore, & Dabbene, 2013). In reality, most systems are
affected by uncertainty and/or disturbances, in which case a con-
trol decision should be made that accounts for these uncertainties.
In robust optimization, one seeks a solution satisfying all admissi-
ble uncertainty realizations (worst-case approach). Unfortunately,
robust programs are in general difficult to solve (Ben-Tal & Ne-
mirovski, 1998), and computational tractability is often obtained
at the cost of introducing conservatism.
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Stochastic optimization offers an alternative approach where
constraints are interpreted in a probabilistic sense as chance con-
straints, allowing for constraint violations with limited probabil-
ity (Prékopa, 1995). Except for special cases, chance constrained
problems are also intractable, since they generally are non-convex
and require the computation of high-dimensional probability in-
tegrals. Randomized methods are tools for approximating the
solutions to such problems, without being limited to specific prob-
ability distributions. By replacing the chance constraint with a fi-
nite number of randomly sampled constraints, the fundamental
question in randomized algorithms is how large to choose the sam-
ple size to guarantee constraint satisfaction with high confidence.
One approach is based on the Vapnik–Chervonenkis (VC) theory of
statistical learning (Anthony & Biggs, 1992), which has been stud-
iedwidely for control applications (Tempo et al., 2013; Vidyasagar,
2001). Recently, a new randomizedmethodknownas the ‘‘scenario
approach’’ has emerged,which is applicablewhenever the sampled
program is convex (Calafiore, 2010; Campi & Garatti, 2008), and
which has been successfully exploited for control design (Calafiore
& Campi, 2006). Compared to methods based on the theory of sta-
tistical learning, the sample size required by the scenario approach
is typically much lower (Calafiore & Campi, 2005, Section 1.2).

The sample size bounds provided by the scenario approach are
based on the notion ofHelly’s dimension (Calafiore, 2010, Definition
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3.3), which is always upper bounded by the number of decision
variables (Calafiore, 2010, Lemma2.2). Since the sample size bound
grows linearly in Helly’s dimension (Calafiore, 2010, Corollary
5.1), finding better bounds not only reduces conservatism of
the solution, but also allows problems to be solved faster.
Unfortunately, computing Helly’s dimension for a given problem is
often challenging. To the best of the authors’ knowledge, the only
attempts to obtain improved bounds are the works in Schildbach,
Fagiano, and Morari (2013) and Zhang, Grammatico, Schildbach,
Goulart, and Lygeros (2014). It is shown in Schildbach et al. (2013)
that Helly’s dimension can be upper bounded by the so-called
support rank (s-rank), obtained by exploiting structural properties
of the constraints in the decision space. Under certain technical
assumptions, the authors of Zhang et al. (2014) upper bound
Helly’s dimension by the number of active constraints, which can
be applied for caseswhere the constraint functions are affine in the
uncertainty variables.

In this paper, we propose new methodologies for bounding
Helly’s dimension that exploit additional structure in the con-
straint functions. We first establish bounds for generic problems
where the constraint functions are separable in the decision and
uncertainty variables. We then exploit these structures for cases
where the constraint functions depend affinely and quadratically
on the uncertainty variables. The derived sample size depends
on the dimension of the uncertainty space, hence complementing
(Schildbach et al., 2013) and generalizing those in Zhang et al.
(2014). Furthermore, we also show explicitly that for the consid-
ered problems the scenario approach together with our bounds
always provides lower sample sizes than the corresponding ones
based on the VC theory of statistical learning.

2. Problem description and technical background

Let δ ∈ ∆ ⊆ Rd be a random variable defined on a probability
space (∆, F , P). We consider chance constrained problems (CCPs)
of the form

CCP(ϵ) :


min
x∈X

c⊤x

s.t. P [g(x, δ) ≤ 0] ≥ 1 − ϵ,
(1)

where X ⊂ Rn is a compact convex set, x ∈ Rn the decision
variable, g : Rn

× ∆ → R the constraint function, ϵ ∈ (0, 1)
the acceptable violation probability, and c ∈ Rn the cost vector.
We consider the scenario program (SP) associated with CCP(ϵ),
where the chance constraint in (1) is replaced by N sampled
constraints, corresponding to independent identically distributed
(i.i.d.) realizations δ(1), . . . , δ(N)

∈ ∆ of the uncertainty vector δ
(Calafiore & Campi, 2005, 2006):

SP[ω] :


min
x∈X

c⊤x

s.t. g(x, δ(j)) ≤ 0 ∀j ∈ {1, . . . ,N}.
(2)

We refer to ω := {δ(1), . . . , δ(N)
} ∈ ∆N as a multi-sample.

Throughout this paper, we make the following assumption.

Standing Assumption 1 (Regularity). For almost all δ ∈ ∆, the
function x → g(x, δ) is convex and lower semi-continuous. For any
integer N , SP[ω] in (2) is almost surely feasible; its optimizer exists
and is unique for almost all realizations of ω ∈ ∆N . For all x ∈ X,
the mapping δ → g(x, δ) is measurable.

Standing Assumption 1 is standard in the scenario approach
(Campi & Garatti, 2008, Assumption 1), (Calafiore, 2010, Assump-
tions 1, 2), (Calafiore & Campi, 2006, Assumptions 1, 2), and (Gram-
matico, Zhang, Margellos, Goulart, & Lygeros, 2016, Appendix B).
The uniqueness requirement can be relaxed by adopting a suitable

(strictly convex or lexicographic) tie-break rule (Calafiore & Campi,
2005, Section 4.1).

Let us denote the (unique) minimizers of SP[ω] and SP[ω \

{δ(k)
}], for k ∈ {1, . . . ,N}, by x⋆ and x⋆

k , respectively. Our forth-
coming results are based on the following two key definitions.

Definition 1 (Support Constraint Calafiore& Campi, 2005, Definition
4). The sample δ(k) is called a support sample if c⊤x⋆

k < c⊤x⋆; in
this case the corresponding constraint g(·, δ(k)) is called a support
constraint for SP[ω]. The set of support constraints of SP[ω] is
denoted by sc(SP[ω]).

We denote by |sc(SP[ω])| the cardinality of the set of support
constraints.

Definition 2 (Helly’s Dimension Calafiore, 2010, Definition 3.1).
Helly’s dimension of SP[ω] in (2) is the smallest integer ζ such that
ess supω∈∆N |sc(SP[ω])| ≤ ζ holds for any finite N ≥ 1.

Intuitively, the SP in (2) can be used to approximate the CCP in
(1). Indeed, the authors of Campi and Garatti (2008) and Calafiore
(2010) show that if the sample size N satisfies

ζ−1
j=0


N
j


ϵ j(1 − ϵ)N−j

≤ β (3)

for some β ∈ (0, 1), then, with confidence at least 1 − β , the opti-
mal solution of SP[ω] is feasible for the original CCP(ϵ) (Calafiore,
2010, Theorem 3.3). It was shown in Calafiore (2010, Lemma 2.2)
that Helly’s dimension ζ is always upper bounded by n. This stan-
dard bound (ζ ≤ n), however, is only tight for fully-supported
problems (Campi & Garatti, 2008, Theorem 1), but remains con-
servative otherwise.

The overall goal of this paper is to find tighter upper bounds
on Helly’s dimension ζ for non-fully-supported problems, which
would allow for smaller N than the one given by the standard
bound. Following Calafiore (2010) one can show that (3) is satisfied
if N is chosen such that

N ≥
2
ϵ


ζ − 1 + ln


1
β


. (4)

Since ϵ is typically chosen small in many practical applications
(e.g. 10−1–10−4) and N roughly scales as O(ζ/ϵ), finding a good
bound on ζ is key for reducing the required sample size. A small
sample size is attractive mainly for two reasons: less conservative
solutions in terms of cost, and reduced computational time for
solving the scenario program in (2).

2.1. Bounding Helly’s dimension

Unfortunately, explicitly computing ζ is in general very dif-
ficult. Tighter bounds on Helly’s dimension were introduced in
Schildbach et al. (2013), based on the so-called support rank
(s-rank). It is defined as the dimension n of the decision space mi-
nus the dimension of themaximal linearly unconstrained subspace
(Schildbach et al., 2013, Definition 3.6), and is therefore never
worse than the standard bound.

There are, however, cases where the s-rank yields no improve-
ment upon the standard bound, although the exact Helly’s dimen-
sion is much lower. Consider, for instance,

min
(y,h)∈Rn−1×R

h

s.t. P [∥Ay − b∥ + δ ≤ h] ≥ 1 − ϵ,
(5)

where ∥ · ∥ is any norm, δ ∈ R is a continuous random variable,
A ∈ Rk×(n−1) has full column rank and b ∈ Rk. The s-rank for
the above problem is n, because A is full column rank. Hence,
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