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a b s t r a c t

Various existed time-series decomposition methods, including wavelet transform, ensem-
ble empirical mode decomposition (EEMD), local characteristic-scale decomposition (LCD),
singular spectrum analysis (SSA), etc., have some defects for nonlinear system signal anal-
ysis. When the signal is more complex, especially noisy signal, the component signal is
forced to decompose into several incomplete components by LCD and SSA. In addition,
the wavelet transform and EEMD need user-defined parameters, and they are very sensi-
tive to the parameters. Therefore, a new signal decomposition algorithm, symplectic geom-
etry mode decomposition (SGMD), is proposed in this paper to decompose a time series
into a set of independent mode components. SGMD uses the symplectic geometry similar-
ity transformation to solve the eigenvalues of the Hamiltonian matrix and reconstruct the
single component signals with its corresponding eigenvectors. Meanwhile, SGMD can effi-
ciently reconstruct the existed modes and remove the noise without any user-defined
parameters. The essence of this method is that signal decomposition is converted into sym-
plectic geometry transformation problem, and the signal is decomposed into a set of sym-
plectic geometry components (SGCs). The analysis results of simulation signals and
experimental signals indicate that the proposed time-series decomposition approach can
decompose the analyzed signals accurately and effectively.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, time series analysis has played an important role in engineering application. A time series can be decom-
posed into a series of simple component series, and by the judgment, reconstruction and identification of the useful compo-
nent series, the most essential information regarding the evolution behaviours of an originating system can be obtained [1].
In fact, the measured signal as a typical time series data usually consists of different modes which have complex time
domain waveforms and time-varying amplitude and frequency. Meanwhile, the oscillatory signals contain a large amount
of valuable system state information about the originating system, therefore, system signals need further study. However,
in order to obtain all the characteristics of a particular component, it is necessary to separate the component from the signal.
For a reliable signal decomposition method, it can efficiently extract the existed modes, separate them from each other and
remove the noise signal. Thus, how best to achieve above objectives is a long-standing problem, and many different methods
have been proposed [2]. Unfortunately, almost all of the existed approaches have at least one of the following flaws:
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(1) The method needs user-defined parameters, and it is very sensitive to the parameters. Besides, the parameters cannot
be chosen adaptively.

(2) The method cannot decompose the signal effectively with noise in the signal, i.e. it does not have noise robustness.
(3) If there is a complex (non-sinusoidal) waveform, the method will decompose it into several inaccurate components.

Wavelet transform can decompose the time series into different frequency bandwidth or scale components of various res-
olutions [3,4], and provide time-domain and frequency-domain localization information of time series at the same time, so
wavelet transform has the characteristics of multi-scale and ‘‘mathematical microscopic”, which makes the wavelet analysis
identify the mutation components in the time series [5,6]. In recent years, wavelet analysis is more and more widely used in
mechanical signal processing [7]. However, the wavelet analysis is an adjustable window Fourier transform essentially. Due
to the limited length of the wavelet basis function, wavelet transform will produce energy leakage, so it is difficult to analyze
the signal in the time-domain and frequency-domain [8]. On the other hand, once the wavelet basis and the decomposition
scale are chosen, the result is a fixed frequency band signal which is only related to the sampling frequency instead of the
signal itself. Thus, the limited length of wavelet transform can cause unwanted leakage and decompose a complete compo-
nent into several inaccurate components (drawback 1 and 3) [9].

Empirical mode decomposition (EMD) method can decompose an amplitude modulation and frequency modulation sig-
nal into a series of intrinsic mode functions (IMFs) adaptively, and the frequency component of each intrinsic mode function
is related to the sampling frequency as well as the self-changing signal itself [10,11]. In addition, the method is used to
decompose the signal without user-defined parameters and based on the time scale characteristics of the data itself. This
is different from the wavelet transform method based on the wavelet basis function essentially. Because of above character-
istics, in theory, EMD method can be applied to decompose any type of signal. In addition, EMD method has obvious advan-
tages in dealing with nonlinear and no-stationary signal, and is very suitable for the analysis of nonlinear and no-stationary
signal [12]. However, Cubic splines of EMD are employed to fit the lower and upper envelopes in each sift, which can lead to
owe envelope, over-envelope and mode mixing (drawback 2 and 3) [13].

EMD is sensitive to noise, thus Wu and Huang have proposed an improved method of EMD called ensemble empirical
mode decomposition (EEMD) to overcome above shortcomings of EMD [14]. The idea of EEMD is to get the final modes
by adding individual subjective independent realizations of the Gaussian white noise signal to the original signal and apply-
ing EMD repeatedly. The EEMD decomposition principle is as follows: when the additional Gaussian white noise is evenly
distributed over the entire time-frequency space, the time-frequency space is composed of different scale components
divided by the filters. When the signal is coupled with a uniformly distributed Gaussian white noise, the signal areas of dif-
ferent scales are automatically mapped to the appropriate scale associated with the Gaussian white noise. Of course, each
independent test can produce strong noisy result, and it is because that each additional noise component contains the signal
and additional Gaussian white noise. Since the noise is different in each individual test, the noise will be eliminated by the
ensemble-averages of sufficient tests. Therefore, EEMD can weaken the effect of noise on the decomposition of the original
signal by adding white noise [15]. Even so, EEMD does not have good noise-robustness for strong noisy signal. In addition, it
contains two non-adaptive parameters (drawback 1) which control the standard deviation of the additional noise and have a
certain effect on the results [16,17].

Aiming at the shortages of above methods, Frei et al. have proposed a new adaptive analysis method called intrinsic time-
scale decomposition (ITD) [18], which can decompose the non-stationary signal into a sum of several proper rotation com-
ponents (PRCs) that are independent of one another adaptively. Compared with the EMD and EEMD, ITD has obvious advan-
tages in end effect and computational efficiency [19]. In addition, the problems of end effect, over envelope, mode mixing,
and IMF criterion in EMD are overcome [20]. The ITD method has been applied to the field of mechanical fault diagnosis in
view of the fact that the ITD method is able to analyze non-stationary and nonlinear signal [21]. But this method fails to elab-
orate the physical significance of the algorithm itself and the PRC. Moreover, the baseline signal is obtained by using linear
transformation to vibration signal, which results in distortion in the instantaneous amplitude and frequency of PRC [22].

Due to some problems existing in the ITD method, its further application is restricted and some improved ITD methods
have been proposed. The envelope signals are got by using cubic spline instead of linear transformation and the local
characteristic-scale decomposition (LCD) is put forward to obtain intrinsic scale components (ISCs) in the literature [19].
The cubic B-spline interpolation is used to obtain smooth single component envelope signal in the literature [23]. The prob-
lems of burr and distortion in the instantaneous amplitude and frequency are solved in the two improved ITD methods.
Cubic spline interpolation method has the characteristics of good convergence and higher smoothness, but mode mixing
would be produced in the cubic spline interpolation, especially in the strong noisy signals (drawback 2 and 3).

Inspired by the idea of the literature [23], the Hermite interpolation would be applied to the ITD method. The cubic Her-
mite interpolation with a characteristic of shape preservation is most widely used, and it is especially suitable for the anal-
ysis of signal that has strong non-stationary characteristics [24]. But the cubic Hermite interpolation is the deterministic
interpolation and the shape of curve cannot be changed when condition is determined. In order to control the shape of curve
surface flexibility and improve the approximation effect in determined condition, the rational Hermite interpolation is put
forward and applied to the EMDmethod in the literature [25]. The rational Hermite interpolation can control the shape of the
interpolation curve by the parameter, which can further improve the fitting accuracy of approximation and decompose the
signal accurately. Many types of rational Hermite basic function have been presented, but the rational Hermite basic function
with parameters is the best in the various types of rational Hermite basic function, which not only has simple structure but
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