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a b s t r a c t

Block-oriented models are often used to model nonlinear systems. These models consist of linear dy-
namic (L) and nonlinear static (N) sub-blocks. This paper addresses the generation of initial estimates
for a Wiener–Hammerstein model (LNL cascade). While it is easy to measure the product of the two lin-
ear blocks using a Gaussian excitation and linear identification methods, it is difficult to split the global
dynamics over the individual blocks. This paper first proposes a well-designed multisine excitation with
pairwise coupled randomphases. Next, amodified best linear approximation is estimated on a shifted fre-
quency grid. It is shown that this procedure creates a shift of the input dynamics with a known frequency
offset, while the output dynamics do not shift. The resulting transfer function, which has complex coef-
ficients due to the frequency shift, is estimated with a modified frequency domain estimation method.
The identified poles and zeros can be assigned to either the input or output dynamics. Once this is done,
it is shown in the literature that the remaining initialization problem can be solved much easier than the
original one. The method is illustrated on experimental data obtained from the Wiener–Hammerstein
benchmark system.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Even if all physical dynamic systems behave nonlinearly to
some extent, we often use linear models to describe them. If the
nonlinear distortions get too large, a linear model is insufficient,
and a nonlinear model is required.

One possibility is to use block-oriented models (Billings &
Fakhouri, 1982; Giri & Bai, 2010), which combine linear dynamic
(L) and nonlinear static (N), i.e. memoryless, blocks. Due to this
highly structurednature, block-orientedmodels offer insight about
the system to the user. This can be useful in e.g. fault detection,
to detect in which part of the system a fault occurred, e.g. chang-
ing dynamics in only part of the model. Block-oriented models
are preferred when there are localized nonlinearities in the sys-
tem, thus leading to a sparse representation of the system in terms
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of interconnected blocks. Due to the separation between the dy-
namics and the nonlinearities, block-oriented models also allow
for an easy discretization (i.e. the conversion from a continuous-
time to a discrete-time representation). We refer the reader to
Giri and Bai (2010) for an elaborated discussion. The simplest
block-oriented models are theWiener model (LN cascade) and the
Hammerstein model (NL cascade). They can be generalized to a
Wiener–Hammersteinmodel (LNL cascade, see Fig. 1). Applications
of Wiener–Hammerstein models can mainly be found in biology
(Bai, Cai, Dudley-Javorosk, & Shields, 2009; Dewhirst, Simpson, An-
garita, Allen, &Newland, 2010; Korenberg&Hunter, 1986), but also
in the modeling of RF power amplifiers (Isaksson, Wisell, & Rön-
now, 2006).

Several identification methods have been proposed to identify
Wiener–Hammerstein systems. Early work can be found in Billings
and Fakhouri (1982) and Korenberg and Hunter (1986). The maxi-
mum likelihood estimate is formulated in Chen and Fassois (1992).
Wiener–Hammerstein systems aremodeled as the cascade ofwell-
selected Hammersteinmodels inWills and Ninness (2012). The re-
cursive identification of error-in-variables Wiener–Hammerstein
systems is considered in Mu and Chen (2014). Both Chen and Fas-
sois (1992) and Wills and Ninness (2012) indicate the importance
of good initial estimates, but not how to obtain them. Sjöberg
and Schoukens (2012) indicates the importance of good initial es-
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Fig. 1. A Wiener–Hammerstein system (R and S are linear dynamic systems and f
is a nonlinear static system).

timates on an example. The optimization of the model parame-
ters can either converge extremely slowly or get trapped in a lo-
cal optimum, even if the correct number of poles and zeros is
assigned to both the input and the output dynamics, leading to
Wiener–Hammersteinmodels that only fit about as well as a linear
model.

Some approaches obtain initial estimates by using specifi-
cally designed experiments. For example, Vandersteen, Rolain, and
Schoukens (1997) proposes a series of experiments with large and
small signal multisines. Weiss, Evans, and Rees (1998) uses only
two experimentswith pairedmultisines, but the approach requires
the estimation of the Volterra kernels of the system. Crama and
Schoukens (2005) proposes an iterative initialization scheme that
only requires one experiment of a well-designed multisine excita-
tion.

A major difficulty is the generation of good initial values for
the two linear blocks R(q) and S(q) of the Wiener–Hammerstein
system (see Fig. 1). An initial estimate for the static nonlinearity
can be obtained using a simple linear regression if a basis function
expansion, linear-in-the-parameters, for the nonlinearity is used,
and if the dynamics are initialized. The poles and the zeros of both
R(q) and S(q) can be obtained from the best linear approximation
(BLA) (Pintelon & Schoukens, 2012) of the Wiener–Hammerstein
system. To obtain initial estimates for R(q) and S(q), the poles and
the zeros of the BLA should be split over the individual transfer
functions R(q) and S(q). Several methods have been proposed
to make this split. The brute-force method in Sjöberg, Lauwers,
and Schoukens (2012) scans all possible splits, leading to an
exponential scanning problem. The advanced method in Sjöberg
et al. (2012) uses a basis function expansion for the input dynamics
and one for the inverse of the output dynamics. A scanning
procedure over the basis functions is proposed as well. Compared
to the brute-force method, the number of scans is lower, but the
computational time can still be large. The approach in Westwick
and Schoukens (2012) not only uses the BLA, but also the so-
called quadratic BLA (QBLA), a higher-order BLA from the squared
input to the output residual of the first-order BLA. By doing so,
the number of possible splits is reduced significantly. Due to the
higher-order nature of the QBLA, however, long measurements
are needed to obtain an accurate estimate. The nonparametric
separation method proposed in Schoukens, Pintelon, and Rolain
(2014a) avoids the pole/zero assignment problem completely, but
also uses the QBLA.

The method proposed in Schoukens, Tiels, and Schoukens
(2014b) and further developed in this paper uses again the first-
order BLA. Using a well-designed excitation signal, the poles and
the zeros of the input dynamics R(q) shift with a frequency offset
that can be chosen by the user, while the poles and the zeros of
the output dynamics S(q) remain invariant. Long measurement
times can be avoided, because no use ismade of higher-order BLAs.
This paper generalizes the basic ideas in Schoukens et al. (2014b)
from cubic nonlinearities to polynomial nonlinearities. Moreover,
experimental results on the Wiener–Hammerstein benchmark
system (Schoukens, Suykens, & Ljung, 2009) are reported.

The rest of this paper is organized as follows. The basic setup
is described in Section 2. A brief overview of the BLA is presented
in Section 3. The proposed method is presented in Section 4.
The experimental results on theWiener–Hammerstein benchmark
systemare reported in Section 5. Finally, the conclusions are drawn
in Section 6.

2. Setup

This section introduces some notation. It also presents the con-
sidered Wiener–Hammerstein system and the assumptions.

2.1. Notation

Without loss of generality, discrete-time systems are consid-
ered. Hence, the integer t denotes the time as a number of
samples. The results in this paper generalize to continuous-time
systems with some minor modifications.

Notation 1 (X(k) and x(t)). The discrete Fourier transform (DFT)
of a time domain signal x(t) is denoted by X(k) = X(ejωk), and is
given by

X(k) =
1

√
N

N−1
t=0

x(t)e−j2π k
N t . (1)

The inverse DFT is given by

x(t) =
1

√
N

N/2
k=−N/2+1

X(k)ej2π
k
N t . (2)

Notation 2 (q−1). The backward shift operator is denoted by q−1,
i.e. q−1x(t) = x(t − 1).

Notation 3 (O(·)). The notation h is an O(Nα) indicates that for
N big enough, |h(N)| ≤ cNα , where c is a strictly positive real
number.

Notation 4 ((·)∗). The complex conjugate of a complex number X
is denoted by X∗.

2.2. The Wiener–Hammerstein system

Consider the Wiener–Hammerstein system in Fig. 1, given by

x(t) = R(q)u(t),
w(t) = f (x(t)),
y(t) = S(q)w(t) + v(t),

(3)

where R(q) and S(q) are linear time-invariant (LTI) discrete-time
transfer functions, i.e.

R(q) =
BR(q)
AR(q)

=

nR
l=0

bR,lq−l

mR
l=0

aR,lq−l

,

S(q) =
BS(q)
AS(q)

=

nS
l=0

bS,lq−l

mS
l=0

aS,lq−l

,

(4)

and where f (x) is a static nonlinear function. Only the input u(t)
and the noise-corrupted output y(t) are available for measure-
ment.

2.3. Assumptions

This paper addresses the generation of initial estimates for the
linear dynamics R(q) and S(q). To do this, assumptions (A1)–(A4)
are made.
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