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a b s t r a c t

In this paper an approach is proposed to decentralized multi-agent identification of large-scale systems
represented by linear discrete-time stochastic MIMO models. It is assumed that each agent: (a) has
access only to a subset of noisy input–output variables; (b) communicates local data processing results
to its neighborhood. The proposed algorithm consists of two stages. The first stage is a consensus-
based stochastic approximation algorithm for estimating input–output correlation functions, while at
the second stage each agent utilizes a stochastic approximation algorithm with expanding truncations
derived from the modified Yule–Walker equations in order to generate all the system parameter
estimates. It is proved that under nonrestrictive assumptions concerning the system properties and
the multi-agent network topology the estimates of the correlation functions converge almost surely
to their true values and those of the system parameters to a solution of the modified Yule–Walker
equations, assuming intermittent observations and communication outages. Conditions are also given
for the strong consistency of the parameter estimates. Simulation results provide an illustration of the
algorithm properties.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Theory and practice of complex and large-scale systems have
been focused during many years on decentralized methods, e.g.,
Šiljak (1991). The attention paid recently to networked control sys-
tems, multi-agent systems and sensor networks have emphasized
their importance, so that many efficient decentralized methods for
control and estimation have been proposed and applied in practice,
e.g., Lunze, Heemels, and Schutter (2013) and references therein.
Also, it has been found that methodologies based on dynamic con-
sensus can represent a convenient tool for achieving a success-
ful compromise between decentralization of functions and global
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system performance, e.g., Tsitsiklis, Bertsekas, and Athans (1986),
Kushner and Yin (1987), Olfati-Saber, Fax, and Murray (2007),
Stanković, Stanković, and Stipanović (2009b), Stanković, Stanković,
and Stipanović (2009a), Stanković, Stanković, and Stipanović
(2011b), Chen and Sayed (2012), Bianchi, Fort, and Hachem (2012),
Nedić and Olshevsky (2015), Stanković, Ilić, and Stanković (2014).

However, to the best of the authors knowledge decentralized
identification of dynamic large-scale systems has not yet been con-
sidered in the literature from a general standpoint (see Irshad,
Mossberg, & Söderström, 2013; Sim, Carbonnell-Marquez, Spencer,
& Jo, 2011 for interesting specific approaches). The main idea of
decentralized identification is to get a global model of a large-scale
system by using distributed measurements performed by a sensor
network in which each node has access only to a subset of input
and output variables (e.g., according to its location or functional
properties) and possesses limited computational and communica-
tion capabilities. In this setting, the sensor network itself is in-
troduced for monitoring and diagnostic purposes and does not
influence dynamics of the system to be identified. Practical en-
gineering motivations are numerous and can be found in diverse
areas of engineering (see, e.g., Nagayama, Sim, Miyamori, and
Spencer, J (2007), Jo, Sim, Nagayama, and Spencer (2011), Lunze
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et al. (2013) and the references therein). More specifically, they in-
clude: system parameter estimation for monitoring and fault de-
tection and isolation in large mechanical constructions (bridges,
oil platforms, large space constructions) or large buildings, moni-
toring of the environment by flocks of mobile robots (the case of
mobile sensor networks), monitoring of large water supply and
distribution systems, system parameter estimation for monitoring
and fault detection and isolation in a systemof hydro power plants,
monitoring and fault detection of furnaces and coal supply in large
thermal power plants, estimation and fault detection in large pro-
duction lines, large chemical plants, iron and steel industry, etc.

The main conceptual problem intrinsic to decentralized iden-
tification lies in the contradiction between the decentralized
nature of data acquisition and local processing imposed by in-
formation structure constraints, on the one side, and the inherent
interconnectedness between all the system variables preventing
ad hoc system decomposition, on the other. The existing results
related to identification with missing data are far from being able
to provide any methodologically consistent general solution, es-
pecially for real time applications (e.g., Aguero & Goodwin, 2008;
Carvajal, Delgado, Aguero, & Goodwin, 2012; Little & Rubin, 2002).

In this paper a consistent approach to decentralized real-time
identification of large-scale systems is proposed. Starting from a
multi-agent setting, the method utilizes local data processing in
real-time and inter-agent communications of the obtained results
aimed at achieving a consensus and ensuring global character of
the systemmodel. As a final result, each agent may possess the es-
timates of all the system model parameters, without recurring to
any type of centralized decision or fusion center.

Formally, it is assumed that the large-scale system to be
identified is represented by a general linear MIMO (multiple in-
put–multiple output) discrete time model with the input gener-
ated by a MIMO ARMA model (see, e.g., Ljung, 1989, Chen, 2002
and Söderström&Stoica, 1989). An algorithm is proposed inwhich,
at the first stage, the multi-agent sensor network is aimed at es-
timating the set of input–output correlation functions using lo-
cally available input–outputmeasurements contaminated by noise
and utilizing a dynamic consensus algorithm over the communi-
cation graph defined in accordance with the adopted communi-
cation structure constraints. In this sense, the methodology from,
e.g., Stanković et al. (2009a,b, 2011b) oriented at consensus-based
decentralized parameter and state estimation is used to extend
the idea presented in Chen (2007) to the multi-agent environ-
ment. At the second stage, the current correlation function es-
timates are used within stochastic approximation schemes with
expanding truncations derived from the modified Yule–Walker
equations to provide estimates of all the system model parame-
ters to each agent, e.g., Chen (2002, 2007); Söderström and Sto-
ica (1989); Stoica (1983). One of the important contributions of
the paper is a rigorous proof of almost sure (a.s.) convergence of
the correlation function estimates to their true values under a set
of nonrestrictive assumptions (methodologically distinct from the
approaches in Bi-Qiang and Chen (2014); Chen (2007), related to
a classical centralized scheme); it is also proved that the global
model parameter estimates converge to a solution of the modified
Yule–Walker equations. The strong identifiability issue is treated in
a separate theorem. Communication outages and intermittent mea-
surement are assumed with positive probabilities. Asynchronous
functioning of the network in the presence of communication de-
lays is also outlined. Simulation results provide an illustration of
the performance of the proposed algorithm.

2. Problem definition and algorithm formulation

Let a dynamic discrete-time multiple input–multiple output
(MIMO) system S be given, with the input vector u(t) =

[u1(t) · · · um(t)]T and the output vector y(t) = [y1(t) · · · yn(t)]T ,

where t denotes thediscrete time instant; let z(t) = [y(t)T u(t)T ]T .
Assume a situation in whichN autonomous agents measure inputs
and outputs of S in such a way that each agent has access to a lo-
cally available subset of input/output variables contaminated by
local additivewhitemeasurement noises. Let the index set S(i) con-
tain the indices corresponding to the components of z(t) accessible
to the ith agent. In addition, we will assume that local measure-
ments may not be available at certain time instants due to sensor
faults (intermittent observations). Consequently, the local mea-
surement vectors are defined by z(i)(t) = diag{I(i)(t)}z̃(i)(t), where
z̃(i)(t) = z(t)+ ξ (i)(t), i = 1, . . . ,N , ξ (i)(t) = [ξ

(i)
y (t)T ξ

(i)
u (t)T ]T is

the local measurement noise (n + m)-vector (having formally the
maximal number of components) and I(i)(t) is an (n + m)-vector
of random binary elements such that I(i)k (t) = 0 a.s. for k ∉ S(i), for
every time instant t .

According to the abovepresented general setup,we assume that
the system S is described by the following general model
A(q)y(t) = B(q)u(t), P(q)u(t) = Q (q)ε(t), (1)

where y(t) are measurable outputs, u(t) are measurable inputs, q
is, depending on the context, either the backward shift operator
or complex variable, ε(t) is the unobservable input, while A(q) =

I + A1q + · · · + Aνaq
νa , B(q) = B1q + · · · + Bνbq

νb , P(q) =

I + P1q + · · · + Pνpq
νp and Q (q) = I + Q1q + · · · + Qνqq

νq , with
Ai = [a[i]

jk ], i = 1, . . . , νa, j, k = 1, . . . , n, Bi = [b[i]
jk ], i = 1, . . . , νb,

j = 1, . . . , n, k = 1, . . . ,m, Pi = [p[i]
jk ], i = 1, . . . , νp, j, k =

1, . . . ,m and Qi = [q[i]
jk ], i = 1, . . . , νq, j, k = 1, . . . ,m.

From (1)we have the compact formG(q)z(t) = S(q)ε(t), where

G(q) =


A(q) −B(q)
0 P(q)


= I + G1q + · · · + Gνqν , Gi =


Ai −Bi

0 Pi


,

i = 1, . . . , ν, S(q) =


0

Q (q)


= S0 + S1q+· · ·+ Sνqν , Si =


0
Qi


,

i = 1, . . . , ν, where ν = max(νa, νb, νp, νq), with Ai = 0, Bj = 0,
Pk = 0, Qs = 0 for i > νa, j > νb, k > νp, s > νq (Chen, 2007;
Ljung, 1989; Söderström & Stoica, 1989). Introducing Z(t; ν) =

[z(t)T · · · z(t − ν + 1)T ]T we obtain
z(t) = −GZ(t − 1; ν) + S(q)ε(t), (2)

where G = [G1 · · ·Gν] is the parameter matrix.
The following assumptions concerning the system and its

variables are adopted at this point:
(A.1) {ξ (i)(t)}, i = 1, . . . ,N , and {ε(t)} are sequences of i.i.d.
zero mean random vectors independent from each other, with
E{ξ (i)(t)ξ (i)(t)T } = R(i)

ξ and E{ε(t)ε(t)T } = Rε , satisfying
E{∥ξ (i)(t)∥2+γ

} < ∞ and E{∥ε(t)∥2+γ
} < ∞ for some γ > 0.

(A.2) All the roots of det A(q) and det P(q) are outside the closed
unit disk.
Under (A.2), {z(t)} is a stationary and ergodic sequence with
E{∥z(t)∥2

} < ∞, so that E{z(t)z(t − τ)T } = Rzz(τ ) = [rzzij (τ )],
(i, j = 1, . . . ,m+n).Multiplying (2) by Z(t−ν−1; µ)(µ ≥ ν) from
the right and taking the mathematical expectation one obtains the
modified Yule–Walker equations:
GΓ + W = 0, (3)

whereW = E{z(t)Z(t − ν − 1; µ)T } and Γ = E{Z(t − 1; ν)Z(t −

ν−1; µ)T } (Chen, 2007; Stoica, 1983). The solutions of (3) are given
by G = −WΓ +

+ G0(I − Γ Γ +), where G0 is any matrix with
appropriate dimensions. The necessary and sufficient condition for
uniquely defining G from (3) is non-degeneracy of Γ (A+ stands
for the pseudoinverse of a matrix A) (Chen, 2007). Replacing z(t)
with its noisy version z̃(i)(t) in Z(t; ν), one obtains Z̃ (i)(t; ν) =

[z̃(i)(t)T · · · z̃(i)(t − ν + 1)T ]T . It is important to notice that (A.1)
implies that E{z̃(i)(t)Z̃ (i)(t − ν − 1; µ)T } = W and E{Z̃ (i)(t −
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